Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester
A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the constru...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2017-04, Vol.139 (15), p.5467-5473 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5473 |
---|---|
container_issue | 15 |
container_start_page | 5467 |
container_title | Journal of the American Chemical Society |
container_volume | 139 |
creator | Tsao, Yi-Yun Timothy Wooley, Karen L |
description | A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the construction of high molecular weight deoxynucleotide polymers. Our six-membered cyclic phosphoester ring-opening polymerization strategy is demonstrated, herein, by an initial preparation of novel polyphosphoesters, comprised of butenyl-functionalized deoxyribonucleoside repeat units, connected via 3′,5′-backbone linkages. A thymidine-derived bicyclic monomer, 3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate, was synthesized in two steps directly from thymidine, via butenylation and diastereoselective cyclization promoted by N,N-dimethyl-4-aminopyridine. Computational modeling of the six-membered 3′,5′-cyclic phosphoester ring derived from deoxyribose indicated strain energies at least 5.4 kcal/mol higher than those of the six-membered monocyclic phosphoester, 2-ethoxy-1,3,2-dioxaphosphinane 2-oxide. These calculations supported the hypothesis that the strained 3′,5′-cyclic monomer can promote ring-opening polymerization to afford the resulting poly(3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate)s with low dispersities ( Đ < 1.10). This advanced design combines the merits of natural product-derived materials and functional, degradable polymers to provide a new platform for functional, synthetically derived polydeoxyribonucleotide-analogue materials. |
doi_str_mv | 10.1021/jacs.7b01116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1886346599</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-38185e74ec0ec300a792f1f8b2c699cd9ba8a6756d7dffae270b10416160f2513</originalsourceid><addsrcrecordid>eNptkU1P3DAQhq2qCBbKjTPKsQcCHidxnEsltHxKIJCgZ8txJsSrJF7sBJF_j1e7bEHqaTSaZ975eAk5AnoKlMHZQml_mpcUAPgPMoOM0TgDxn-SGaWUxbngyR7Z934R0pQJ2CV7TCRFCgmfkdenqR8aHIw-ia7GXg_G9qqNnpupM5XpMb5AZ96wih5tO1Vo3ydnStuPukU7mAqj84DblxF9VDvbRSp6Mu_xPXYlutA1n3RrdPTYWL9sLPoB3S-yU6vW4-EmHpC_V5fP85v47uH6dn5-F6sU8iFOBIgM8xQ1RZ1QqvKC1VCLkmleFLoqSiUUzzNe5VVdK2Q5LYGmwIHTmmWQHJA_a93lWHZYaewHp1q5dKZTbpJWGfm90ptGvtg3maUZQCqCwO-NgLOv4cBBdsZrbFvVox29BBE-m_KsKAJ6ska1s947rLdjgMqVS3Llkty4FPDjr6tt4U9b_o1edS3s6MKT_f-1PgDkgJ5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886346599</pqid></control><display><type>article</type><title>Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Tsao, Yi-Yun Timothy ; Wooley, Karen L</creator><creatorcontrib>Tsao, Yi-Yun Timothy ; Wooley, Karen L</creatorcontrib><description>A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the construction of high molecular weight deoxynucleotide polymers. Our six-membered cyclic phosphoester ring-opening polymerization strategy is demonstrated, herein, by an initial preparation of novel polyphosphoesters, comprised of butenyl-functionalized deoxyribonucleoside repeat units, connected via 3′,5′-backbone linkages. A thymidine-derived bicyclic monomer, 3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate, was synthesized in two steps directly from thymidine, via butenylation and diastereoselective cyclization promoted by N,N-dimethyl-4-aminopyridine. Computational modeling of the six-membered 3′,5′-cyclic phosphoester ring derived from deoxyribose indicated strain energies at least 5.4 kcal/mol higher than those of the six-membered monocyclic phosphoester, 2-ethoxy-1,3,2-dioxaphosphinane 2-oxide. These calculations supported the hypothesis that the strained 3′,5′-cyclic monomer can promote ring-opening polymerization to afford the resulting poly(3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate)s with low dispersities ( Đ < 1.10). This advanced design combines the merits of natural product-derived materials and functional, degradable polymers to provide a new platform for functional, synthetically derived polydeoxyribonucleotide-analogue materials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b01116</identifier><identifier>PMID: 28394136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Molecular Structure ; Organophosphonates - chemistry ; Polydeoxyribonucleotides - chemical synthesis ; Polydeoxyribonucleotides - chemistry ; Thymidine - chemistry</subject><ispartof>Journal of the American Chemical Society, 2017-04, Vol.139 (15), p.5467-5473</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-38185e74ec0ec300a792f1f8b2c699cd9ba8a6756d7dffae270b10416160f2513</citedby><cites>FETCH-LOGICAL-a417t-38185e74ec0ec300a792f1f8b2c699cd9ba8a6756d7dffae270b10416160f2513</cites><orcidid>0000-0003-4086-384X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b01116$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b01116$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28394136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsao, Yi-Yun Timothy</creatorcontrib><creatorcontrib>Wooley, Karen L</creatorcontrib><title>Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the construction of high molecular weight deoxynucleotide polymers. Our six-membered cyclic phosphoester ring-opening polymerization strategy is demonstrated, herein, by an initial preparation of novel polyphosphoesters, comprised of butenyl-functionalized deoxyribonucleoside repeat units, connected via 3′,5′-backbone linkages. A thymidine-derived bicyclic monomer, 3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate, was synthesized in two steps directly from thymidine, via butenylation and diastereoselective cyclization promoted by N,N-dimethyl-4-aminopyridine. Computational modeling of the six-membered 3′,5′-cyclic phosphoester ring derived from deoxyribose indicated strain energies at least 5.4 kcal/mol higher than those of the six-membered monocyclic phosphoester, 2-ethoxy-1,3,2-dioxaphosphinane 2-oxide. These calculations supported the hypothesis that the strained 3′,5′-cyclic monomer can promote ring-opening polymerization to afford the resulting poly(3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate)s with low dispersities ( Đ < 1.10). This advanced design combines the merits of natural product-derived materials and functional, degradable polymers to provide a new platform for functional, synthetically derived polydeoxyribonucleotide-analogue materials.</description><subject>Molecular Structure</subject><subject>Organophosphonates - chemistry</subject><subject>Polydeoxyribonucleotides - chemical synthesis</subject><subject>Polydeoxyribonucleotides - chemistry</subject><subject>Thymidine - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU1P3DAQhq2qCBbKjTPKsQcCHidxnEsltHxKIJCgZ8txJsSrJF7sBJF_j1e7bEHqaTSaZ975eAk5AnoKlMHZQml_mpcUAPgPMoOM0TgDxn-SGaWUxbngyR7Z934R0pQJ2CV7TCRFCgmfkdenqR8aHIw-ia7GXg_G9qqNnpupM5XpMb5AZ96wih5tO1Vo3ydnStuPukU7mAqj84DblxF9VDvbRSp6Mu_xPXYlutA1n3RrdPTYWL9sLPoB3S-yU6vW4-EmHpC_V5fP85v47uH6dn5-F6sU8iFOBIgM8xQ1RZ1QqvKC1VCLkmleFLoqSiUUzzNe5VVdK2Q5LYGmwIHTmmWQHJA_a93lWHZYaewHp1q5dKZTbpJWGfm90ptGvtg3maUZQCqCwO-NgLOv4cBBdsZrbFvVox29BBE-m_KsKAJ6ska1s947rLdjgMqVS3Llkty4FPDjr6tt4U9b_o1edS3s6MKT_f-1PgDkgJ5U</recordid><startdate>20170419</startdate><enddate>20170419</enddate><creator>Tsao, Yi-Yun Timothy</creator><creator>Wooley, Karen L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4086-384X</orcidid></search><sort><creationdate>20170419</creationdate><title>Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester</title><author>Tsao, Yi-Yun Timothy ; Wooley, Karen L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-38185e74ec0ec300a792f1f8b2c699cd9ba8a6756d7dffae270b10416160f2513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Molecular Structure</topic><topic>Organophosphonates - chemistry</topic><topic>Polydeoxyribonucleotides - chemical synthesis</topic><topic>Polydeoxyribonucleotides - chemistry</topic><topic>Thymidine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsao, Yi-Yun Timothy</creatorcontrib><creatorcontrib>Wooley, Karen L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsao, Yi-Yun Timothy</au><au>Wooley, Karen L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-04-19</date><risdate>2017</risdate><volume>139</volume><issue>15</issue><spage>5467</spage><epage>5473</epage><pages>5467-5473</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the construction of high molecular weight deoxynucleotide polymers. Our six-membered cyclic phosphoester ring-opening polymerization strategy is demonstrated, herein, by an initial preparation of novel polyphosphoesters, comprised of butenyl-functionalized deoxyribonucleoside repeat units, connected via 3′,5′-backbone linkages. A thymidine-derived bicyclic monomer, 3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate, was synthesized in two steps directly from thymidine, via butenylation and diastereoselective cyclization promoted by N,N-dimethyl-4-aminopyridine. Computational modeling of the six-membered 3′,5′-cyclic phosphoester ring derived from deoxyribose indicated strain energies at least 5.4 kcal/mol higher than those of the six-membered monocyclic phosphoester, 2-ethoxy-1,3,2-dioxaphosphinane 2-oxide. These calculations supported the hypothesis that the strained 3′,5′-cyclic monomer can promote ring-opening polymerization to afford the resulting poly(3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate)s with low dispersities ( Đ < 1.10). This advanced design combines the merits of natural product-derived materials and functional, degradable polymers to provide a new platform for functional, synthetically derived polydeoxyribonucleotide-analogue materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28394136</pmid><doi>10.1021/jacs.7b01116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4086-384X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2017-04, Vol.139 (15), p.5467-5473 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451148 |
source | MEDLINE; American Chemical Society Journals |
subjects | Molecular Structure Organophosphonates - chemistry Polydeoxyribonucleotides - chemical synthesis Polydeoxyribonucleotides - chemistry Thymidine - chemistry |
title | Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic,%20Functional%20Thymidine-Derived%20Polydeoxyribonucleotide%20Analogues%20from%20a%20Six-Membered%20Cyclic%20Phosphoester&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Tsao,%20Yi-Yun%20Timothy&rft.date=2017-04-19&rft.volume=139&rft.issue=15&rft.spage=5467&rft.epage=5473&rft.pages=5467-5473&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b01116&rft_dat=%3Cproquest_pubme%3E1886346599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886346599&rft_id=info:pmid/28394136&rfr_iscdi=true |