Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester

A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-04, Vol.139 (15), p.5467-5473
Hauptverfasser: Tsao, Yi-Yun Timothy, Wooley, Karen L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5473
container_issue 15
container_start_page 5467
container_title Journal of the American Chemical Society
container_volume 139
creator Tsao, Yi-Yun Timothy
Wooley, Karen L
description A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the construction of high molecular weight deoxynucleotide polymers. Our six-membered cyclic phosphoester ring-opening polymerization strategy is demonstrated, herein, by an initial preparation of novel polyphosphoesters, comprised of butenyl-functionalized deoxyribonucleoside repeat units, connected via 3′,5′-backbone linkages. A thymidine-derived bicyclic monomer, 3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate, was synthesized in two steps directly from thymidine, via butenylation and diastereoselective cyclization promoted by N,N-dimethyl-4-aminopyridine. Computational modeling of the six-membered 3′,5′-cyclic phosphoester ring derived from deoxyribose indicated strain energies at least 5.4 kcal/mol higher than those of the six-membered monocyclic phosphoester, 2-ethoxy-1,3,2-dioxaphosphinane 2-oxide. These calculations supported the hypothesis that the strained 3′,5′-cyclic monomer can promote ring-opening polymerization to afford the resulting poly­(3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate)­s with low dispersities ( Đ < 1.10). This advanced design combines the merits of natural product-derived materials and functional, degradable polymers to provide a new platform for functional, synthetically derived polydeoxyribonucleotide-analogue materials.
doi_str_mv 10.1021/jacs.7b01116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1886346599</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-38185e74ec0ec300a792f1f8b2c699cd9ba8a6756d7dffae270b10416160f2513</originalsourceid><addsrcrecordid>eNptkU1P3DAQhq2qCBbKjTPKsQcCHidxnEsltHxKIJCgZ8txJsSrJF7sBJF_j1e7bEHqaTSaZ975eAk5AnoKlMHZQml_mpcUAPgPMoOM0TgDxn-SGaWUxbngyR7Z934R0pQJ2CV7TCRFCgmfkdenqR8aHIw-ia7GXg_G9qqNnpupM5XpMb5AZ96wih5tO1Vo3ydnStuPukU7mAqj84DblxF9VDvbRSp6Mu_xPXYlutA1n3RrdPTYWL9sLPoB3S-yU6vW4-EmHpC_V5fP85v47uH6dn5-F6sU8iFOBIgM8xQ1RZ1QqvKC1VCLkmleFLoqSiUUzzNe5VVdK2Q5LYGmwIHTmmWQHJA_a93lWHZYaewHp1q5dKZTbpJWGfm90ptGvtg3maUZQCqCwO-NgLOv4cBBdsZrbFvVox29BBE-m_KsKAJ6ska1s947rLdjgMqVS3Llkty4FPDjr6tt4U9b_o1edS3s6MKT_f-1PgDkgJ5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886346599</pqid></control><display><type>article</type><title>Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Tsao, Yi-Yun Timothy ; Wooley, Karen L</creator><creatorcontrib>Tsao, Yi-Yun Timothy ; Wooley, Karen L</creatorcontrib><description>A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the construction of high molecular weight deoxynucleotide polymers. Our six-membered cyclic phosphoester ring-opening polymerization strategy is demonstrated, herein, by an initial preparation of novel polyphosphoesters, comprised of butenyl-functionalized deoxyribonucleoside repeat units, connected via 3′,5′-backbone linkages. A thymidine-derived bicyclic monomer, 3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate, was synthesized in two steps directly from thymidine, via butenylation and diastereoselective cyclization promoted by N,N-dimethyl-4-aminopyridine. Computational modeling of the six-membered 3′,5′-cyclic phosphoester ring derived from deoxyribose indicated strain energies at least 5.4 kcal/mol higher than those of the six-membered monocyclic phosphoester, 2-ethoxy-1,3,2-dioxaphosphinane 2-oxide. These calculations supported the hypothesis that the strained 3′,5′-cyclic monomer can promote ring-opening polymerization to afford the resulting poly­(3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate)­s with low dispersities ( Đ &lt; 1.10). This advanced design combines the merits of natural product-derived materials and functional, degradable polymers to provide a new platform for functional, synthetically derived polydeoxyribonucleotide-analogue materials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b01116</identifier><identifier>PMID: 28394136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Molecular Structure ; Organophosphonates - chemistry ; Polydeoxyribonucleotides - chemical synthesis ; Polydeoxyribonucleotides - chemistry ; Thymidine - chemistry</subject><ispartof>Journal of the American Chemical Society, 2017-04, Vol.139 (15), p.5467-5473</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-38185e74ec0ec300a792f1f8b2c699cd9ba8a6756d7dffae270b10416160f2513</citedby><cites>FETCH-LOGICAL-a417t-38185e74ec0ec300a792f1f8b2c699cd9ba8a6756d7dffae270b10416160f2513</cites><orcidid>0000-0003-4086-384X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b01116$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b01116$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28394136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsao, Yi-Yun Timothy</creatorcontrib><creatorcontrib>Wooley, Karen L</creatorcontrib><title>Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the construction of high molecular weight deoxynucleotide polymers. Our six-membered cyclic phosphoester ring-opening polymerization strategy is demonstrated, herein, by an initial preparation of novel polyphosphoesters, comprised of butenyl-functionalized deoxyribonucleoside repeat units, connected via 3′,5′-backbone linkages. A thymidine-derived bicyclic monomer, 3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate, was synthesized in two steps directly from thymidine, via butenylation and diastereoselective cyclization promoted by N,N-dimethyl-4-aminopyridine. Computational modeling of the six-membered 3′,5′-cyclic phosphoester ring derived from deoxyribose indicated strain energies at least 5.4 kcal/mol higher than those of the six-membered monocyclic phosphoester, 2-ethoxy-1,3,2-dioxaphosphinane 2-oxide. These calculations supported the hypothesis that the strained 3′,5′-cyclic monomer can promote ring-opening polymerization to afford the resulting poly­(3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate)­s with low dispersities ( Đ &lt; 1.10). This advanced design combines the merits of natural product-derived materials and functional, degradable polymers to provide a new platform for functional, synthetically derived polydeoxyribonucleotide-analogue materials.</description><subject>Molecular Structure</subject><subject>Organophosphonates - chemistry</subject><subject>Polydeoxyribonucleotides - chemical synthesis</subject><subject>Polydeoxyribonucleotides - chemistry</subject><subject>Thymidine - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU1P3DAQhq2qCBbKjTPKsQcCHidxnEsltHxKIJCgZ8txJsSrJF7sBJF_j1e7bEHqaTSaZ975eAk5AnoKlMHZQml_mpcUAPgPMoOM0TgDxn-SGaWUxbngyR7Z934R0pQJ2CV7TCRFCgmfkdenqR8aHIw-ia7GXg_G9qqNnpupM5XpMb5AZ96wih5tO1Vo3ydnStuPukU7mAqj84DblxF9VDvbRSp6Mu_xPXYlutA1n3RrdPTYWL9sLPoB3S-yU6vW4-EmHpC_V5fP85v47uH6dn5-F6sU8iFOBIgM8xQ1RZ1QqvKC1VCLkmleFLoqSiUUzzNe5VVdK2Q5LYGmwIHTmmWQHJA_a93lWHZYaewHp1q5dKZTbpJWGfm90ptGvtg3maUZQCqCwO-NgLOv4cBBdsZrbFvVox29BBE-m_KsKAJ6ska1s947rLdjgMqVS3Llkty4FPDjr6tt4U9b_o1edS3s6MKT_f-1PgDkgJ5U</recordid><startdate>20170419</startdate><enddate>20170419</enddate><creator>Tsao, Yi-Yun Timothy</creator><creator>Wooley, Karen L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4086-384X</orcidid></search><sort><creationdate>20170419</creationdate><title>Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester</title><author>Tsao, Yi-Yun Timothy ; Wooley, Karen L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-38185e74ec0ec300a792f1f8b2c699cd9ba8a6756d7dffae270b10416160f2513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Molecular Structure</topic><topic>Organophosphonates - chemistry</topic><topic>Polydeoxyribonucleotides - chemical synthesis</topic><topic>Polydeoxyribonucleotides - chemistry</topic><topic>Thymidine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsao, Yi-Yun Timothy</creatorcontrib><creatorcontrib>Wooley, Karen L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsao, Yi-Yun Timothy</au><au>Wooley, Karen L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-04-19</date><risdate>2017</risdate><volume>139</volume><issue>15</issue><spage>5467</spage><epage>5473</epage><pages>5467-5473</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A grand challenge that crosses synthetic chemistry and biology is the scalable production of functional analogues of biomacromolecules. We have focused our attention on the use of deoxynucleoside building blocks bearing non-natural bases to develop a synthetic methodology that allows for the construction of high molecular weight deoxynucleotide polymers. Our six-membered cyclic phosphoester ring-opening polymerization strategy is demonstrated, herein, by an initial preparation of novel polyphosphoesters, comprised of butenyl-functionalized deoxyribonucleoside repeat units, connected via 3′,5′-backbone linkages. A thymidine-derived bicyclic monomer, 3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate, was synthesized in two steps directly from thymidine, via butenylation and diastereoselective cyclization promoted by N,N-dimethyl-4-aminopyridine. Computational modeling of the six-membered 3′,5′-cyclic phosphoester ring derived from deoxyribose indicated strain energies at least 5.4 kcal/mol higher than those of the six-membered monocyclic phosphoester, 2-ethoxy-1,3,2-dioxaphosphinane 2-oxide. These calculations supported the hypothesis that the strained 3′,5′-cyclic monomer can promote ring-opening polymerization to afford the resulting poly­(3′,5′-cyclic 3-(3-butenyl) thymidine ethylphosphate)­s with low dispersities ( Đ &lt; 1.10). This advanced design combines the merits of natural product-derived materials and functional, degradable polymers to provide a new platform for functional, synthetically derived polydeoxyribonucleotide-analogue materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28394136</pmid><doi>10.1021/jacs.7b01116</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4086-384X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-04, Vol.139 (15), p.5467-5473
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5451148
source MEDLINE; American Chemical Society Journals
subjects Molecular Structure
Organophosphonates - chemistry
Polydeoxyribonucleotides - chemical synthesis
Polydeoxyribonucleotides - chemistry
Thymidine - chemistry
title Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic,%20Functional%20Thymidine-Derived%20Polydeoxyribonucleotide%20Analogues%20from%20a%20Six-Membered%20Cyclic%20Phosphoester&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Tsao,%20Yi-Yun%20Timothy&rft.date=2017-04-19&rft.volume=139&rft.issue=15&rft.spage=5467&rft.epage=5473&rft.pages=5467-5473&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b01116&rft_dat=%3Cproquest_pubme%3E1886346599%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886346599&rft_id=info:pmid/28394136&rfr_iscdi=true