Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes

P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2017-06, Vol.28 (11), p.1539-1550
Hauptverfasser: Dalton, Lauren E, Bean, Björn D M, Davey, Michael, Conibear, Elizabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1550
container_issue 11
container_start_page 1539
container_title Molecular biology of the cell
container_volume 28
creator Dalton, Lauren E
Bean, Björn D M
Davey, Michael
Conibear, Elizabeth
description P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is needed to form vesicles and regulate its own trafficking, suggesting that flippase activity and localization are linked. However, the role of Neo1 in endosomal recycling is not well characterized. To identify novel regulators of Neo1 trafficking and activity at endosomes, we first identified mutants with impaired recycling of a Snc1-based reporter and subsequently used high-content microscopy to classify these mutants based on the localization of Neo1 or its binding partners, Mon2 and Dop1. This analysis identified a role for Arl1 in stabilizing the Mon2/Dop1 complex and uncovered a new function for Vps13 in early endosome recycling and Neo1 localization. We further showed that the cargo-selective sorting nexin Snx3 is required for Neo1 trafficking and identified an Snx3 sorting motif in the Neo1 N-terminus. Of importance, the Snx3-dependent sorting of Neo1 was required for the correct sorting of another Snx3 cargo protein, suggesting that the incorporation of Neo1 into recycling tubules may influence their formation.
doi_str_mv 10.1091/mbc.e16-11-0772
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5449152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1887427876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-b220ba4864c67c3989e68a86748a5268611316916fac5c2a1e3b3c69dabaccbe3</originalsourceid><addsrcrecordid>eNpVkUtv1TAQhS0Eog9Ys0NesknrSRw_NkioKlCpAiHBFmviO8k1JHGxnSvx7_FVSwUrjzVnzjw-xl6BuABh4XIZ_AWBagAaoXX7hJ2C7Wwje6Oe1lj0toG-lSfsLOcfQoCUSj9nJ62RQmrZn7LvXzZcSyhYwoH4Pkz7xse10Fp4WHAK68TDrv7CGCjzNR5o5ommbcYSU-Zx5J8oAi8JxzH4n0c9Fk7rLua4UH7Bno04Z3r58J6zb--vv159bG4_f7i5enfbeNn1pRnaVgwojZJead9ZY0kZNEpLg32rjALoQFlQI_retwjUDZ1XdocDej9Qd87e3vvebcNCO18nTji7u1SXSL9dxOD-z6xh76Z4cL2Utl6oGrx5MEjx10a5uCVkT_OMK8UtOzBGy1Ybrar08l7qU8w50fjYBoQ7UnGViqtUHIA7UqkVr_-d7lH_F0P3B7bci7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887427876</pqid></control><display><type>article</type><title>Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dalton, Lauren E ; Bean, Björn D M ; Davey, Michael ; Conibear, Elizabeth</creator><contributor>Glick, Benjamin S.</contributor><creatorcontrib>Dalton, Lauren E ; Bean, Björn D M ; Davey, Michael ; Conibear, Elizabeth ; Glick, Benjamin S.</creatorcontrib><description>P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is needed to form vesicles and regulate its own trafficking, suggesting that flippase activity and localization are linked. However, the role of Neo1 in endosomal recycling is not well characterized. To identify novel regulators of Neo1 trafficking and activity at endosomes, we first identified mutants with impaired recycling of a Snc1-based reporter and subsequently used high-content microscopy to classify these mutants based on the localization of Neo1 or its binding partners, Mon2 and Dop1. This analysis identified a role for Arl1 in stabilizing the Mon2/Dop1 complex and uncovered a new function for Vps13 in early endosome recycling and Neo1 localization. We further showed that the cargo-selective sorting nexin Snx3 is required for Neo1 trafficking and identified an Snx3 sorting motif in the Neo1 N-terminus. Of importance, the Snx3-dependent sorting of Neo1 was required for the correct sorting of another Snx3 cargo protein, suggesting that the incorporation of Neo1 into recycling tubules may influence their formation.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.e16-11-0772</identifier><identifier>PMID: 28404745</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Adenosine Triphosphatases - genetics ; Adenosine Triphosphatases - metabolism ; Carrier Proteins - metabolism ; Endosomes - metabolism ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Phospholipid Transfer Proteins - genetics ; Phospholipid Transfer Proteins - metabolism ; Protein Transport - physiology ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; SNARE Proteins - metabolism ; Sorting Nexins - metabolism ; Transport Vesicles - metabolism ; Vesicular Transport Proteins - metabolism</subject><ispartof>Molecular biology of the cell, 2017-06, Vol.28 (11), p.1539-1550</ispartof><rights>2017 Dalton et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).</rights><rights>2017 Dalton This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-b220ba4864c67c3989e68a86748a5268611316916fac5c2a1e3b3c69dabaccbe3</citedby><cites>FETCH-LOGICAL-c435t-b220ba4864c67c3989e68a86748a5268611316916fac5c2a1e3b3c69dabaccbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449152/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449152/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28404745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Glick, Benjamin S.</contributor><creatorcontrib>Dalton, Lauren E</creatorcontrib><creatorcontrib>Bean, Björn D M</creatorcontrib><creatorcontrib>Davey, Michael</creatorcontrib><creatorcontrib>Conibear, Elizabeth</creatorcontrib><title>Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is needed to form vesicles and regulate its own trafficking, suggesting that flippase activity and localization are linked. However, the role of Neo1 in endosomal recycling is not well characterized. To identify novel regulators of Neo1 trafficking and activity at endosomes, we first identified mutants with impaired recycling of a Snc1-based reporter and subsequently used high-content microscopy to classify these mutants based on the localization of Neo1 or its binding partners, Mon2 and Dop1. This analysis identified a role for Arl1 in stabilizing the Mon2/Dop1 complex and uncovered a new function for Vps13 in early endosome recycling and Neo1 localization. We further showed that the cargo-selective sorting nexin Snx3 is required for Neo1 trafficking and identified an Snx3 sorting motif in the Neo1 N-terminus. Of importance, the Snx3-dependent sorting of Neo1 was required for the correct sorting of another Snx3 cargo protein, suggesting that the incorporation of Neo1 into recycling tubules may influence their formation.</description><subject>Adenosine Triphosphatases - genetics</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Carrier Proteins - metabolism</subject><subject>Endosomes - metabolism</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Phospholipid Transfer Proteins - genetics</subject><subject>Phospholipid Transfer Proteins - metabolism</subject><subject>Protein Transport - physiology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>SNARE Proteins - metabolism</subject><subject>Sorting Nexins - metabolism</subject><subject>Transport Vesicles - metabolism</subject><subject>Vesicular Transport Proteins - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtv1TAQhS0Eog9Ys0NesknrSRw_NkioKlCpAiHBFmviO8k1JHGxnSvx7_FVSwUrjzVnzjw-xl6BuABh4XIZ_AWBagAaoXX7hJ2C7Wwje6Oe1lj0toG-lSfsLOcfQoCUSj9nJ62RQmrZn7LvXzZcSyhYwoH4Pkz7xse10Fp4WHAK68TDrv7CGCjzNR5o5ommbcYSU-Zx5J8oAi8JxzH4n0c9Fk7rLua4UH7Bno04Z3r58J6zb--vv159bG4_f7i5enfbeNn1pRnaVgwojZJead9ZY0kZNEpLg32rjALoQFlQI_retwjUDZ1XdocDej9Qd87e3vvebcNCO18nTji7u1SXSL9dxOD-z6xh76Z4cL2Utl6oGrx5MEjx10a5uCVkT_OMK8UtOzBGy1Ybrar08l7qU8w50fjYBoQ7UnGViqtUHIA7UqkVr_-d7lH_F0P3B7bci7w</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Dalton, Lauren E</creator><creator>Bean, Björn D M</creator><creator>Davey, Michael</creator><creator>Conibear, Elizabeth</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170601</creationdate><title>Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes</title><author>Dalton, Lauren E ; Bean, Björn D M ; Davey, Michael ; Conibear, Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-b220ba4864c67c3989e68a86748a5268611316916fac5c2a1e3b3c69dabaccbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine Triphosphatases - genetics</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Carrier Proteins - metabolism</topic><topic>Endosomes - metabolism</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Phospholipid Transfer Proteins - genetics</topic><topic>Phospholipid Transfer Proteins - metabolism</topic><topic>Protein Transport - physiology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>SNARE Proteins - metabolism</topic><topic>Sorting Nexins - metabolism</topic><topic>Transport Vesicles - metabolism</topic><topic>Vesicular Transport Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalton, Lauren E</creatorcontrib><creatorcontrib>Bean, Björn D M</creatorcontrib><creatorcontrib>Davey, Michael</creatorcontrib><creatorcontrib>Conibear, Elizabeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalton, Lauren E</au><au>Bean, Björn D M</au><au>Davey, Michael</au><au>Conibear, Elizabeth</au><au>Glick, Benjamin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>28</volume><issue>11</issue><spage>1539</spage><epage>1550</epage><pages>1539-1550</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>P4-ATPases are a family of putative phospholipid flippases that regulate lipid membrane asymmetry, which is important for vesicle formation. Two yeast flippases, Drs2 and Neo1, have nonredundant functions in the recycling of the synaptobrevin-like v-SNARE Snc1 from early endosomes. Drs2 activity is needed to form vesicles and regulate its own trafficking, suggesting that flippase activity and localization are linked. However, the role of Neo1 in endosomal recycling is not well characterized. To identify novel regulators of Neo1 trafficking and activity at endosomes, we first identified mutants with impaired recycling of a Snc1-based reporter and subsequently used high-content microscopy to classify these mutants based on the localization of Neo1 or its binding partners, Mon2 and Dop1. This analysis identified a role for Arl1 in stabilizing the Mon2/Dop1 complex and uncovered a new function for Vps13 in early endosome recycling and Neo1 localization. We further showed that the cargo-selective sorting nexin Snx3 is required for Neo1 trafficking and identified an Snx3 sorting motif in the Neo1 N-terminus. Of importance, the Snx3-dependent sorting of Neo1 was required for the correct sorting of another Snx3 cargo protein, suggesting that the incorporation of Neo1 into recycling tubules may influence their formation.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>28404745</pmid><doi>10.1091/mbc.e16-11-0772</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2017-06, Vol.28 (11), p.1539-1550
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5449152
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphatases - genetics
Adenosine Triphosphatases - metabolism
Carrier Proteins - metabolism
Endosomes - metabolism
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Phospholipid Transfer Proteins - genetics
Phospholipid Transfer Proteins - metabolism
Protein Transport - physiology
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
SNARE Proteins - metabolism
Sorting Nexins - metabolism
Transport Vesicles - metabolism
Vesicular Transport Proteins - metabolism
title Quantitative high-content imaging identifies novel regulators of Neo1 trafficking at endosomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20high-content%20imaging%20identifies%20novel%20regulators%20of%20Neo1%20trafficking%20at%20endosomes&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Dalton,%20Lauren%20E&rft.date=2017-06-01&rft.volume=28&rft.issue=11&rft.spage=1539&rft.epage=1550&rft.pages=1539-1550&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.e16-11-0772&rft_dat=%3Cproquest_pubme%3E1887427876%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887427876&rft_id=info:pmid/28404745&rfr_iscdi=true