Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. Wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2012-10, Vol.5 (10), p.2003-2014
Hauptverfasser: Bobek, Michael M., Stehle, Richard C., Hahn, David W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2014
container_issue 10
container_start_page 2003
container_title Materials
container_volume 5
creator Bobek, Michael M.
Stehle, Richard C.
Hahn, David W.
description A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.
doi_str_mv 10.3390/ma5102003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5449043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3316406881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-10bb9ef431fbe92c690d302996183b56596f1067f8e3190e9fe5c688ef311e9f3</originalsourceid><addsrcrecordid>eNpVUU1PwzAMrRBIIODAP4jgxGEQN23XXJDQBGzSEIgPcYza1GmDumQk2UT_PYGhCXyxLT89-_klyQnQC8Y4vVxUOdCUUraTHADnxQh4lu3-qfeTY-_faQzGoEz5QdLNzBp90G0VtDXEKjJzMT986gbJvXXLzva2HYg2pCKTQfZakids7Cd5qwI68rzsdQjatOTRWYneE2UdmQ6Nsy0acocG3Q_1UbKnqt7j8W8-TF5vb14m09H84W42uZ6PJBtnYQS0rjmqjIGqkaey4LRhNI0CoGR1XuS8UECLsSqRAafIFeayKEtUDCB27DC52vAuV_UCG4kmuKoXS6cXlRuErbT4PzG6E61dizzLOM1YJDjdENj4FuGlDig7aY1BGQSkADkUEXT2u8XZj1V8oHi3K2eiMAF5Wpa8SPM0os43KOms9w7V9gyg4tsxsXWMfQGXP4kI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528896252</pqid></control><display><type>article</type><title>Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Bobek, Michael M. ; Stehle, Richard C. ; Hahn, David W.</creator><creatorcontrib>Bobek, Michael M. ; Stehle, Richard C. ; Hahn, David W.</creatorcontrib><description>A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma5102003</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Electricity distribution ; Experiments ; Gas flow ; Gases ; Hydrogen ; Morphology ; Oxidation ; Solar energy ; Stainless steel ; Temperature ; Zinc oxides</subject><ispartof>Materials, 2012-10, Vol.5 (10), p.2003-2014</ispartof><rights>Copyright MDPI AG 2012</rights><rights>2012 by the authors. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-10bb9ef431fbe92c690d302996183b56596f1067f8e3190e9fe5c688ef311e9f3</citedby><cites>FETCH-LOGICAL-c374t-10bb9ef431fbe92c690d302996183b56596f1067f8e3190e9fe5c688ef311e9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449043/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449043/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1211516$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bobek, Michael M.</creatorcontrib><creatorcontrib>Stehle, Richard C.</creatorcontrib><creatorcontrib>Hahn, David W.</creatorcontrib><title>Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation</title><title>Materials</title><description>A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.</description><subject>Electricity distribution</subject><subject>Experiments</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Hydrogen</subject><subject>Morphology</subject><subject>Oxidation</subject><subject>Solar energy</subject><subject>Stainless steel</subject><subject>Temperature</subject><subject>Zinc oxides</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVUU1PwzAMrRBIIODAP4jgxGEQN23XXJDQBGzSEIgPcYza1GmDumQk2UT_PYGhCXyxLT89-_klyQnQC8Y4vVxUOdCUUraTHADnxQh4lu3-qfeTY-_faQzGoEz5QdLNzBp90G0VtDXEKjJzMT986gbJvXXLzva2HYg2pCKTQfZakids7Cd5qwI68rzsdQjatOTRWYneE2UdmQ6Nsy0acocG3Q_1UbKnqt7j8W8-TF5vb14m09H84W42uZ6PJBtnYQS0rjmqjIGqkaey4LRhNI0CoGR1XuS8UECLsSqRAafIFeayKEtUDCB27DC52vAuV_UCG4kmuKoXS6cXlRuErbT4PzG6E61dizzLOM1YJDjdENj4FuGlDig7aY1BGQSkADkUEXT2u8XZj1V8oHi3K2eiMAF5Wpa8SPM0os43KOms9w7V9gyg4tsxsXWMfQGXP4kI</recordid><startdate>20121023</startdate><enddate>20121023</enddate><creator>Bobek, Michael M.</creator><creator>Stehle, Richard C.</creator><creator>Hahn, David W.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20121023</creationdate><title>Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation</title><author>Bobek, Michael M. ; Stehle, Richard C. ; Hahn, David W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-10bb9ef431fbe92c690d302996183b56596f1067f8e3190e9fe5c688ef311e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electricity distribution</topic><topic>Experiments</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Hydrogen</topic><topic>Morphology</topic><topic>Oxidation</topic><topic>Solar energy</topic><topic>Stainless steel</topic><topic>Temperature</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobek, Michael M.</creatorcontrib><creatorcontrib>Stehle, Richard C.</creatorcontrib><creatorcontrib>Hahn, David W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobek, Michael M.</au><au>Stehle, Richard C.</au><au>Hahn, David W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation</atitle><jtitle>Materials</jtitle><date>2012-10-23</date><risdate>2012</risdate><volume>5</volume><issue>10</issue><spage>2003</spage><epage>2014</epage><pages>2003-2014</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma5102003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2012-10, Vol.5 (10), p.2003-2014
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5449043
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Electricity distribution
Experiments
Gas flow
Gases
Hydrogen
Morphology
Oxidation
Solar energy
Stainless steel
Temperature
Zinc oxides
title Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Iron%20Oxide%20Morphology%20in%20a%20Cyclic%20Redox%20Water%20Splitting%20Process%20for%20Hydrogen%20Generation&rft.jtitle=Materials&rft.au=Bobek,%20Michael%20M.&rft.date=2012-10-23&rft.volume=5&rft.issue=10&rft.spage=2003&rft.epage=2014&rft.pages=2003-2014&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma5102003&rft_dat=%3Cproquest_pubme%3E3316406881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528896252&rft_id=info:pmid/&rfr_iscdi=true