Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation
A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. Wi...
Gespeichert in:
Veröffentlicht in: | Materials 2012-10, Vol.5 (10), p.2003-2014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2014 |
---|---|
container_issue | 10 |
container_start_page | 2003 |
container_title | Materials |
container_volume | 5 |
creator | Bobek, Michael M. Stehle, Richard C. Hahn, David W. |
description | A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction. |
doi_str_mv | 10.3390/ma5102003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5449043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3316406881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-10bb9ef431fbe92c690d302996183b56596f1067f8e3190e9fe5c688ef311e9f3</originalsourceid><addsrcrecordid>eNpVUU1PwzAMrRBIIODAP4jgxGEQN23XXJDQBGzSEIgPcYza1GmDumQk2UT_PYGhCXyxLT89-_klyQnQC8Y4vVxUOdCUUraTHADnxQh4lu3-qfeTY-_faQzGoEz5QdLNzBp90G0VtDXEKjJzMT986gbJvXXLzva2HYg2pCKTQfZakids7Cd5qwI68rzsdQjatOTRWYneE2UdmQ6Nsy0acocG3Q_1UbKnqt7j8W8-TF5vb14m09H84W42uZ6PJBtnYQS0rjmqjIGqkaey4LRhNI0CoGR1XuS8UECLsSqRAafIFeayKEtUDCB27DC52vAuV_UCG4kmuKoXS6cXlRuErbT4PzG6E61dizzLOM1YJDjdENj4FuGlDig7aY1BGQSkADkUEXT2u8XZj1V8oHi3K2eiMAF5Wpa8SPM0os43KOms9w7V9gyg4tsxsXWMfQGXP4kI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528896252</pqid></control><display><type>article</type><title>Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Bobek, Michael M. ; Stehle, Richard C. ; Hahn, David W.</creator><creatorcontrib>Bobek, Michael M. ; Stehle, Richard C. ; Hahn, David W.</creatorcontrib><description>A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma5102003</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Electricity distribution ; Experiments ; Gas flow ; Gases ; Hydrogen ; Morphology ; Oxidation ; Solar energy ; Stainless steel ; Temperature ; Zinc oxides</subject><ispartof>Materials, 2012-10, Vol.5 (10), p.2003-2014</ispartof><rights>Copyright MDPI AG 2012</rights><rights>2012 by the authors. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-10bb9ef431fbe92c690d302996183b56596f1067f8e3190e9fe5c688ef311e9f3</citedby><cites>FETCH-LOGICAL-c374t-10bb9ef431fbe92c690d302996183b56596f1067f8e3190e9fe5c688ef311e9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449043/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449043/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1211516$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bobek, Michael M.</creatorcontrib><creatorcontrib>Stehle, Richard C.</creatorcontrib><creatorcontrib>Hahn, David W.</creatorcontrib><title>Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation</title><title>Materials</title><description>A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.</description><subject>Electricity distribution</subject><subject>Experiments</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Hydrogen</subject><subject>Morphology</subject><subject>Oxidation</subject><subject>Solar energy</subject><subject>Stainless steel</subject><subject>Temperature</subject><subject>Zinc oxides</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVUU1PwzAMrRBIIODAP4jgxGEQN23XXJDQBGzSEIgPcYza1GmDumQk2UT_PYGhCXyxLT89-_klyQnQC8Y4vVxUOdCUUraTHADnxQh4lu3-qfeTY-_faQzGoEz5QdLNzBp90G0VtDXEKjJzMT986gbJvXXLzva2HYg2pCKTQfZakids7Cd5qwI68rzsdQjatOTRWYneE2UdmQ6Nsy0acocG3Q_1UbKnqt7j8W8-TF5vb14m09H84W42uZ6PJBtnYQS0rjmqjIGqkaey4LRhNI0CoGR1XuS8UECLsSqRAafIFeayKEtUDCB27DC52vAuV_UCG4kmuKoXS6cXlRuErbT4PzG6E61dizzLOM1YJDjdENj4FuGlDig7aY1BGQSkADkUEXT2u8XZj1V8oHi3K2eiMAF5Wpa8SPM0os43KOms9w7V9gyg4tsxsXWMfQGXP4kI</recordid><startdate>20121023</startdate><enddate>20121023</enddate><creator>Bobek, Michael M.</creator><creator>Stehle, Richard C.</creator><creator>Hahn, David W.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20121023</creationdate><title>Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation</title><author>Bobek, Michael M. ; Stehle, Richard C. ; Hahn, David W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-10bb9ef431fbe92c690d302996183b56596f1067f8e3190e9fe5c688ef311e9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electricity distribution</topic><topic>Experiments</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Hydrogen</topic><topic>Morphology</topic><topic>Oxidation</topic><topic>Solar energy</topic><topic>Stainless steel</topic><topic>Temperature</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bobek, Michael M.</creatorcontrib><creatorcontrib>Stehle, Richard C.</creatorcontrib><creatorcontrib>Hahn, David W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bobek, Michael M.</au><au>Stehle, Richard C.</au><au>Hahn, David W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation</atitle><jtitle>Materials</jtitle><date>2012-10-23</date><risdate>2012</risdate><volume>5</volume><issue>10</issue><spage>2003</spage><epage>2014</epage><pages>2003-2014</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma5102003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2012-10, Vol.5 (10), p.2003-2014 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5449043 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Electricity distribution Experiments Gas flow Gases Hydrogen Morphology Oxidation Solar energy Stainless steel Temperature Zinc oxides |
title | Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Iron%20Oxide%20Morphology%20in%20a%20Cyclic%20Redox%20Water%20Splitting%20Process%20for%20Hydrogen%20Generation&rft.jtitle=Materials&rft.au=Bobek,%20Michael%20M.&rft.date=2012-10-23&rft.volume=5&rft.issue=10&rft.spage=2003&rft.epage=2014&rft.pages=2003-2014&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma5102003&rft_dat=%3Cproquest_pubme%3E3316406881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528896252&rft_id=info:pmid/&rfr_iscdi=true |