Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation

The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-05, Vol.114 (21), p.E4125-E4133
Hauptverfasser: Stein, Tamar, Bandyopadhyay, Biswajit, Troy, Tyler P., Fang, Yigang, Kostko, Oleg, Ahmed, Musahid, Head-Gordon, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E4133
container_issue 21
container_start_page E4125
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Stein, Tamar
Bandyopadhyay, Biswajit
Troy, Tyler P.
Fang, Yigang
Kostko, Oleg
Ahmed, Musahid
Head-Gordon, Martin
description The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C₂H₂) n ⁺, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C₄H₄⁺ and C₆H₆⁺ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C₂H₂)n⁺ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C₆H₆⁺ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.
doi_str_mv 10.1073/pnas.1616464114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26483322</jstor_id><sourcerecordid>26483322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-16172c9c0ce1407460798237be0dbd1f0e93fb1e0a88fb763821f826e84889ca3</originalsourceid><addsrcrecordid>eNpVkT9v1TAUxS0Eoq-FmQlkMXVJazuOYy9IVcU_qRILzJbj3PBcJXawnaJ0YmXmG_JJ8HuvtDBZ8vn53Ht8EHpByRklbX0-e5POqKCCC04pf4Q2lChaCa7IY7QhhLWV5IwfoeOUrgkhqpHkKTpikktOqNqgnxcddt5lF3C_ejM5m7DxPZ63IQcXvLs1RfN4MinhNIPNMUyQ44oj3IAZcRF___g1hRHsMgKeTd5-N2vCQ-Hw3gB6bCzkdQQP2I5LyhATzgF34G_3d_sRz9CTwYwJnt-dJ-jLu7efLz9UV5_ef7y8uKpsQ2SuStiWWWWJBcpJywVplWR12wHpu54OBFQ9dBSIkXLoWlFLRgfJBJTIUllTn6A3B9956SboLfgczajn6CYTVx2M0_8r3m3113CjG86LFysGrw8GIWWnk3UZ7NYG78vnaFo3jeKqQKd3U2L4tkDKenLJwjgaD2FJmkolpGpFs0PPD6iNIaUIw_0ulOhdy3rXsn5oubx49W-Ee_5vrQV4eQCuUw7xQRdc1jVj9R_-q7Jt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896897659</pqid></control><display><type>article</type><title>Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Stein, Tamar ; Bandyopadhyay, Biswajit ; Troy, Tyler P. ; Fang, Yigang ; Kostko, Oleg ; Ahmed, Musahid ; Head-Gordon, Martin</creator><creatorcontrib>Stein, Tamar ; Bandyopadhyay, Biswajit ; Troy, Tyler P. ; Fang, Yigang ; Kostko, Oleg ; Ahmed, Musahid ; Head-Gordon, Martin ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C₂H₂) n ⁺, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C₄H₄⁺ and C₆H₆⁺ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (&gt;2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C₂H₂)n⁺ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n &gt; 3, as well as other metastable C₆H₆⁺ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1616464114</identifier><identifier>PMID: 28484019</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ion-molecule reactions ; molecular dynamics ; photoionization mass spectrometry ; Physical Sciences ; PNAS Plus ; polycyclic aromatic hydrocarbons ; quantum chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-05, Vol.114 (21), p.E4125-E4133</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-16172c9c0ce1407460798237be0dbd1f0e93fb1e0a88fb763821f826e84889ca3</citedby><cites>FETCH-LOGICAL-c508t-16172c9c0ce1407460798237be0dbd1f0e93fb1e0a88fb763821f826e84889ca3</cites><orcidid>0000-0002-4309-6669 ; 0000-0003-1216-673X ; 0000000243096669 ; 000000031216673X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26483322$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26483322$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28484019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1355949$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stein, Tamar</creatorcontrib><creatorcontrib>Bandyopadhyay, Biswajit</creatorcontrib><creatorcontrib>Troy, Tyler P.</creatorcontrib><creatorcontrib>Fang, Yigang</creatorcontrib><creatorcontrib>Kostko, Oleg</creatorcontrib><creatorcontrib>Ahmed, Musahid</creatorcontrib><creatorcontrib>Head-Gordon, Martin</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C₂H₂) n ⁺, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C₄H₄⁺ and C₆H₆⁺ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (&gt;2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C₂H₂)n⁺ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n &gt; 3, as well as other metastable C₆H₆⁺ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ion-molecule reactions</subject><subject>molecular dynamics</subject><subject>photoionization mass spectrometry</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>polycyclic aromatic hydrocarbons</subject><subject>quantum chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkT9v1TAUxS0Eoq-FmQlkMXVJazuOYy9IVcU_qRILzJbj3PBcJXawnaJ0YmXmG_JJ8HuvtDBZ8vn53Ht8EHpByRklbX0-e5POqKCCC04pf4Q2lChaCa7IY7QhhLWV5IwfoeOUrgkhqpHkKTpikktOqNqgnxcddt5lF3C_ejM5m7DxPZ63IQcXvLs1RfN4MinhNIPNMUyQ44oj3IAZcRF___g1hRHsMgKeTd5-N2vCQ-Hw3gB6bCzkdQQP2I5LyhATzgF34G_3d_sRz9CTwYwJnt-dJ-jLu7efLz9UV5_ef7y8uKpsQ2SuStiWWWWJBcpJywVplWR12wHpu54OBFQ9dBSIkXLoWlFLRgfJBJTIUllTn6A3B9956SboLfgczajn6CYTVx2M0_8r3m3113CjG86LFysGrw8GIWWnk3UZ7NYG78vnaFo3jeKqQKd3U2L4tkDKenLJwjgaD2FJmkolpGpFs0PPD6iNIaUIw_0ulOhdy3rXsn5oubx49W-Ee_5vrQV4eQCuUw7xQRdc1jVj9R_-q7Jt</recordid><startdate>20170523</startdate><enddate>20170523</enddate><creator>Stein, Tamar</creator><creator>Bandyopadhyay, Biswajit</creator><creator>Troy, Tyler P.</creator><creator>Fang, Yigang</creator><creator>Kostko, Oleg</creator><creator>Ahmed, Musahid</creator><creator>Head-Gordon, Martin</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4309-6669</orcidid><orcidid>https://orcid.org/0000-0003-1216-673X</orcidid><orcidid>https://orcid.org/0000000243096669</orcidid><orcidid>https://orcid.org/000000031216673X</orcidid></search><sort><creationdate>20170523</creationdate><title>Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation</title><author>Stein, Tamar ; Bandyopadhyay, Biswajit ; Troy, Tyler P. ; Fang, Yigang ; Kostko, Oleg ; Ahmed, Musahid ; Head-Gordon, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-16172c9c0ce1407460798237be0dbd1f0e93fb1e0a88fb763821f826e84889ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ion-molecule reactions</topic><topic>molecular dynamics</topic><topic>photoionization mass spectrometry</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>polycyclic aromatic hydrocarbons</topic><topic>quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Tamar</creatorcontrib><creatorcontrib>Bandyopadhyay, Biswajit</creatorcontrib><creatorcontrib>Troy, Tyler P.</creatorcontrib><creatorcontrib>Fang, Yigang</creatorcontrib><creatorcontrib>Kostko, Oleg</creatorcontrib><creatorcontrib>Ahmed, Musahid</creatorcontrib><creatorcontrib>Head-Gordon, Martin</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, Tamar</au><au>Bandyopadhyay, Biswajit</au><au>Troy, Tyler P.</au><au>Fang, Yigang</au><au>Kostko, Oleg</au><au>Ahmed, Musahid</au><au>Head-Gordon, Martin</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-05-23</date><risdate>2017</risdate><volume>114</volume><issue>21</issue><spage>E4125</spage><epage>E4133</epage><pages>E4125-E4133</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C₂H₂) n ⁺, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C₄H₄⁺ and C₆H₆⁺ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (&gt;2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C₂H₂)n⁺ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n &gt; 3, as well as other metastable C₆H₆⁺ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28484019</pmid><doi>10.1073/pnas.1616464114</doi><orcidid>https://orcid.org/0000-0002-4309-6669</orcidid><orcidid>https://orcid.org/0000-0003-1216-673X</orcidid><orcidid>https://orcid.org/0000000243096669</orcidid><orcidid>https://orcid.org/000000031216673X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-05, Vol.114 (21), p.E4125-E4133
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448212
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ion-molecule reactions
molecular dynamics
photoionization mass spectrometry
Physical Sciences
PNAS Plus
polycyclic aromatic hydrocarbons
quantum chemistry
title Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20dynamics%20and%20photoionization%20mass%20spectrometry%20reveal%20ion%E2%80%93molecule%20pathways%20from%20ionized%20acetylene%20clusters%20to%20benzene%20cation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stein,%20Tamar&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-05-23&rft.volume=114&rft.issue=21&rft.spage=E4125&rft.epage=E4133&rft.pages=E4125-E4133&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1616464114&rft_dat=%3Cjstor_pubme%3E26483322%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896897659&rft_id=info:pmid/28484019&rft_jstor_id=26483322&rfr_iscdi=true