Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation
The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-05, Vol.114 (21), p.E4125-E4133 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E4133 |
---|---|
container_issue | 21 |
container_start_page | E4125 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Stein, Tamar Bandyopadhyay, Biswajit Troy, Tyler P. Fang, Yigang Kostko, Oleg Ahmed, Musahid Head-Gordon, Martin |
description | The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C₂H₂)
n
⁺, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C₄H₄⁺ and C₆H₆⁺ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C₂H₂)n⁺ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C₆H₆⁺ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM. |
doi_str_mv | 10.1073/pnas.1616464114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26483322</jstor_id><sourcerecordid>26483322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-16172c9c0ce1407460798237be0dbd1f0e93fb1e0a88fb763821f826e84889ca3</originalsourceid><addsrcrecordid>eNpVkT9v1TAUxS0Eoq-FmQlkMXVJazuOYy9IVcU_qRILzJbj3PBcJXawnaJ0YmXmG_JJ8HuvtDBZ8vn53Ht8EHpByRklbX0-e5POqKCCC04pf4Q2lChaCa7IY7QhhLWV5IwfoeOUrgkhqpHkKTpikktOqNqgnxcddt5lF3C_ejM5m7DxPZ63IQcXvLs1RfN4MinhNIPNMUyQ44oj3IAZcRF___g1hRHsMgKeTd5-N2vCQ-Hw3gB6bCzkdQQP2I5LyhATzgF34G_3d_sRz9CTwYwJnt-dJ-jLu7efLz9UV5_ef7y8uKpsQ2SuStiWWWWJBcpJywVplWR12wHpu54OBFQ9dBSIkXLoWlFLRgfJBJTIUllTn6A3B9956SboLfgczajn6CYTVx2M0_8r3m3113CjG86LFysGrw8GIWWnk3UZ7NYG78vnaFo3jeKqQKd3U2L4tkDKenLJwjgaD2FJmkolpGpFs0PPD6iNIaUIw_0ulOhdy3rXsn5oubx49W-Ee_5vrQV4eQCuUw7xQRdc1jVj9R_-q7Jt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1896897659</pqid></control><display><type>article</type><title>Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Stein, Tamar ; Bandyopadhyay, Biswajit ; Troy, Tyler P. ; Fang, Yigang ; Kostko, Oleg ; Ahmed, Musahid ; Head-Gordon, Martin</creator><creatorcontrib>Stein, Tamar ; Bandyopadhyay, Biswajit ; Troy, Tyler P. ; Fang, Yigang ; Kostko, Oleg ; Ahmed, Musahid ; Head-Gordon, Martin ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C₂H₂)
n
⁺, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C₄H₄⁺ and C₆H₆⁺ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C₂H₂)n⁺ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C₆H₆⁺ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1616464114</identifier><identifier>PMID: 28484019</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ion-molecule reactions ; molecular dynamics ; photoionization mass spectrometry ; Physical Sciences ; PNAS Plus ; polycyclic aromatic hydrocarbons ; quantum chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-05, Vol.114 (21), p.E4125-E4133</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-16172c9c0ce1407460798237be0dbd1f0e93fb1e0a88fb763821f826e84889ca3</citedby><cites>FETCH-LOGICAL-c508t-16172c9c0ce1407460798237be0dbd1f0e93fb1e0a88fb763821f826e84889ca3</cites><orcidid>0000-0002-4309-6669 ; 0000-0003-1216-673X ; 0000000243096669 ; 000000031216673X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26483322$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26483322$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28484019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1355949$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stein, Tamar</creatorcontrib><creatorcontrib>Bandyopadhyay, Biswajit</creatorcontrib><creatorcontrib>Troy, Tyler P.</creatorcontrib><creatorcontrib>Fang, Yigang</creatorcontrib><creatorcontrib>Kostko, Oleg</creatorcontrib><creatorcontrib>Ahmed, Musahid</creatorcontrib><creatorcontrib>Head-Gordon, Martin</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C₂H₂)
n
⁺, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C₄H₄⁺ and C₆H₆⁺ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C₂H₂)n⁺ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C₆H₆⁺ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ion-molecule reactions</subject><subject>molecular dynamics</subject><subject>photoionization mass spectrometry</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>polycyclic aromatic hydrocarbons</subject><subject>quantum chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkT9v1TAUxS0Eoq-FmQlkMXVJazuOYy9IVcU_qRILzJbj3PBcJXawnaJ0YmXmG_JJ8HuvtDBZ8vn53Ht8EHpByRklbX0-e5POqKCCC04pf4Q2lChaCa7IY7QhhLWV5IwfoeOUrgkhqpHkKTpikktOqNqgnxcddt5lF3C_ejM5m7DxPZ63IQcXvLs1RfN4MinhNIPNMUyQ44oj3IAZcRF___g1hRHsMgKeTd5-N2vCQ-Hw3gB6bCzkdQQP2I5LyhATzgF34G_3d_sRz9CTwYwJnt-dJ-jLu7efLz9UV5_ef7y8uKpsQ2SuStiWWWWJBcpJywVplWR12wHpu54OBFQ9dBSIkXLoWlFLRgfJBJTIUllTn6A3B9956SboLfgczajn6CYTVx2M0_8r3m3113CjG86LFysGrw8GIWWnk3UZ7NYG78vnaFo3jeKqQKd3U2L4tkDKenLJwjgaD2FJmkolpGpFs0PPD6iNIaUIw_0ulOhdy3rXsn5oubx49W-Ee_5vrQV4eQCuUw7xQRdc1jVj9R_-q7Jt</recordid><startdate>20170523</startdate><enddate>20170523</enddate><creator>Stein, Tamar</creator><creator>Bandyopadhyay, Biswajit</creator><creator>Troy, Tyler P.</creator><creator>Fang, Yigang</creator><creator>Kostko, Oleg</creator><creator>Ahmed, Musahid</creator><creator>Head-Gordon, Martin</creator><general>National Academy of Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4309-6669</orcidid><orcidid>https://orcid.org/0000-0003-1216-673X</orcidid><orcidid>https://orcid.org/0000000243096669</orcidid><orcidid>https://orcid.org/000000031216673X</orcidid></search><sort><creationdate>20170523</creationdate><title>Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation</title><author>Stein, Tamar ; Bandyopadhyay, Biswajit ; Troy, Tyler P. ; Fang, Yigang ; Kostko, Oleg ; Ahmed, Musahid ; Head-Gordon, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-16172c9c0ce1407460798237be0dbd1f0e93fb1e0a88fb763821f826e84889ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ion-molecule reactions</topic><topic>molecular dynamics</topic><topic>photoionization mass spectrometry</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>polycyclic aromatic hydrocarbons</topic><topic>quantum chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stein, Tamar</creatorcontrib><creatorcontrib>Bandyopadhyay, Biswajit</creatorcontrib><creatorcontrib>Troy, Tyler P.</creatorcontrib><creatorcontrib>Fang, Yigang</creatorcontrib><creatorcontrib>Kostko, Oleg</creatorcontrib><creatorcontrib>Ahmed, Musahid</creatorcontrib><creatorcontrib>Head-Gordon, Martin</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stein, Tamar</au><au>Bandyopadhyay, Biswajit</au><au>Troy, Tyler P.</au><au>Fang, Yigang</au><au>Kostko, Oleg</au><au>Ahmed, Musahid</au><au>Head-Gordon, Martin</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-05-23</date><risdate>2017</risdate><volume>114</volume><issue>21</issue><spage>E4125</spage><epage>E4133</epage><pages>E4125-E4133</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C₂H₂)
n
⁺, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C₄H₄⁺ and C₆H₆⁺ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C₂H₂)n⁺ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C₆H₆⁺ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28484019</pmid><doi>10.1073/pnas.1616464114</doi><orcidid>https://orcid.org/0000-0002-4309-6669</orcidid><orcidid>https://orcid.org/0000-0003-1216-673X</orcidid><orcidid>https://orcid.org/0000000243096669</orcidid><orcidid>https://orcid.org/000000031216673X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-05, Vol.114 (21), p.E4125-E4133 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448212 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ion-molecule reactions molecular dynamics photoionization mass spectrometry Physical Sciences PNAS Plus polycyclic aromatic hydrocarbons quantum chemistry |
title | Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T02%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20dynamics%20and%20photoionization%20mass%20spectrometry%20reveal%20ion%E2%80%93molecule%20pathways%20from%20ionized%20acetylene%20clusters%20to%20benzene%20cation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stein,%20Tamar&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-05-23&rft.volume=114&rft.issue=21&rft.spage=E4125&rft.epage=E4133&rft.pages=E4125-E4133&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1616464114&rft_dat=%3Cjstor_pubme%3E26483322%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1896897659&rft_id=info:pmid/28484019&rft_jstor_id=26483322&rfr_iscdi=true |