Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases

Product template (PT) domains from fungal nonreducing polyketide synthases (NR-PKSs) are responsible for controlling the aldol cyclizations of poly-β-ketone intermediates assembled during the catalytic cycle. Our ability to understand the high regioselective control that PT domains exert is hindered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-05, Vol.114 (21), p.E4142-E4148
Hauptverfasser: Barajas, Jesus F., Shakya, Gaurav, Moreno, Gabriel, Rivera, Heriberto, Jackson, David R., Topper, Caitlyn L., Vagstad, Anna L., La Clair, James J., Townsend, Craig A., Burkart, Michael D., Tsai, Shiou-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E4148
container_issue 21
container_start_page E4142
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Barajas, Jesus F.
Shakya, Gaurav
Moreno, Gabriel
Rivera, Heriberto
Jackson, David R.
Topper, Caitlyn L.
Vagstad, Anna L.
La Clair, James J.
Townsend, Craig A.
Burkart, Michael D.
Tsai, Shiou-Chuan
description Product template (PT) domains from fungal nonreducing polyketide synthases (NR-PKSs) are responsible for controlling the aldol cyclizations of poly-β-ketone intermediates assembled during the catalytic cycle. Our ability to understand the high regioselective control that PT domains exert is hindered by the inaccessibility of intrinsically unstable poly-β-ketones for in vitro studies. We describe here the crystallographic application of “atom replacement” mimetics in which isoxazole rings linked by thioethers mimic the alternating sites of carbonyls in the poly-β-ketone intermediates. We report the 1.8-Å cocrystal structure of the PksA PT domain from aflatoxin biosynthesis with a heptaketide mimetic tethered to a stably modified 4′-phosphopantetheine, which provides important empirical evidence for a previously proposed mechanism of PT-catalyzed cyclization. Key observations support the proposed deprotonation at C4 of the nascent polyketide by the catalytic His1345 and the role of a protein-coordinated water network to selectively activate the C9 carbonyl for nucleophilic addition. The importance of the 4′-phosphate at the distal end of the pantetheine arm is demonstrated to both facilitate delivery of the heptaketide mimetic deep into the PT active site and anchor one end of this linear array to precisely meter C4 into close proximity to the catalytic His1345. Additional structural features, docking simulations, and mutational experiments characterize protein–substrate mimic interactions, which likely play roles in orienting and stabilizing interactions during the native multistep catalytic cycle. These findings afford a view of a polyketide “atom-replaced” mimetic in a NR-PKS active site that could prove general for other PKS domains.
doi_str_mv 10.1073/pnas.1609001114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26483324</jstor_id><sourcerecordid>26483324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-ef04c033c06a69542e9a28f51ed8fdc0e48c6a4ee1a98103b0eac35243fdedf23</originalsourceid><addsrcrecordid>eNpVkU9v1DAQxSMEotvCmRPIEue04z9J7AsSqqAgVYIDnC3Xnux6SexgO0j7CfjauNrShdOMNL9580avaV5RuKQw8KslmHxJe1AAlFLxpNlQULTthYKnzQaADa0UTJw15znvAUB1Ep43Z0wKKYCpTfP7a5wOP7B4h2T2c21sJgePkyO5pNWWNZmJmODIjHZngs-VID5kv92VXJsSyZKiqyQpOC-TKUhcnI0PZFyDLT6GSpEQQ8JK-bAly-lkPoSyMxnzi-bZaKaMLx_qRfP944dv15_a2y83n6_f37ZWCF5aHEFY4NxCb3rVCYbKMDl2FJ0cnQUU0vZGIFKjJAV-B2gs75jgo0M3Mn7RvDvqLuvdjM5iKPVBvSQ_m3TQ0Xj9_yT4nd7GX7oTQjJQVeDtg0CKP1fMRe_jmkL1rKmCrpcDG4ZKXR0pm2LOCcfHCxT0fXL6Pjl9Sq5uvPnX2CP_N6oKvD4C-1xiOs17ITmvD_4BGsakhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905687277</pqid></control><display><type>article</type><title>Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Barajas, Jesus F. ; Shakya, Gaurav ; Moreno, Gabriel ; Rivera, Heriberto ; Jackson, David R. ; Topper, Caitlyn L. ; Vagstad, Anna L. ; La Clair, James J. ; Townsend, Craig A. ; Burkart, Michael D. ; Tsai, Shiou-Chuan</creator><creatorcontrib>Barajas, Jesus F. ; Shakya, Gaurav ; Moreno, Gabriel ; Rivera, Heriberto ; Jackson, David R. ; Topper, Caitlyn L. ; Vagstad, Anna L. ; La Clair, James J. ; Townsend, Craig A. ; Burkart, Michael D. ; Tsai, Shiou-Chuan</creatorcontrib><description>Product template (PT) domains from fungal nonreducing polyketide synthases (NR-PKSs) are responsible for controlling the aldol cyclizations of poly-β-ketone intermediates assembled during the catalytic cycle. Our ability to understand the high regioselective control that PT domains exert is hindered by the inaccessibility of intrinsically unstable poly-β-ketones for in vitro studies. We describe here the crystallographic application of “atom replacement” mimetics in which isoxazole rings linked by thioethers mimic the alternating sites of carbonyls in the poly-β-ketone intermediates. We report the 1.8-Å cocrystal structure of the PksA PT domain from aflatoxin biosynthesis with a heptaketide mimetic tethered to a stably modified 4′-phosphopantetheine, which provides important empirical evidence for a previously proposed mechanism of PT-catalyzed cyclization. Key observations support the proposed deprotonation at C4 of the nascent polyketide by the catalytic His1345 and the role of a protein-coordinated water network to selectively activate the C9 carbonyl for nucleophilic addition. The importance of the 4′-phosphate at the distal end of the pantetheine arm is demonstrated to both facilitate delivery of the heptaketide mimetic deep into the PT active site and anchor one end of this linear array to precisely meter C4 into close proximity to the catalytic His1345. Additional structural features, docking simulations, and mutational experiments characterize protein–substrate mimic interactions, which likely play roles in orienting and stabilizing interactions during the native multistep catalytic cycle. These findings afford a view of a polyketide “atom-replaced” mimetic in a NR-PKS active site that could prove general for other PKS domains.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1609001114</identifier><identifier>PMID: 28484029</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aldehydes ; Anchors ; Biological Sciences ; Biomimetics ; Biosynthesis ; Carbonyl compounds ; Carbonyls ; Catalysis ; Crystal structure ; Crystallography ; Docking ; Fungi ; In vitro methods and tests ; Intermediates ; Ketones ; Mutagenesis, Site-Directed ; Pantetheine - isolation &amp; purification ; Phosphate ; PNAS Plus ; Polyketide Synthases - chemistry ; Polyketide Synthases - genetics ; Polyketide Synthases - metabolism ; Polyketides - chemistry ; Polyketides - metabolism ; Protein Conformation ; Proteins ; Proximity ; Simulation ; Thioethers</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-05, Vol.114 (21), p.E4142-E4148</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 23, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-ef04c033c06a69542e9a28f51ed8fdc0e48c6a4ee1a98103b0eac35243fdedf23</citedby><cites>FETCH-LOGICAL-c443t-ef04c033c06a69542e9a28f51ed8fdc0e48c6a4ee1a98103b0eac35243fdedf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26483324$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26483324$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28484029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barajas, Jesus F.</creatorcontrib><creatorcontrib>Shakya, Gaurav</creatorcontrib><creatorcontrib>Moreno, Gabriel</creatorcontrib><creatorcontrib>Rivera, Heriberto</creatorcontrib><creatorcontrib>Jackson, David R.</creatorcontrib><creatorcontrib>Topper, Caitlyn L.</creatorcontrib><creatorcontrib>Vagstad, Anna L.</creatorcontrib><creatorcontrib>La Clair, James J.</creatorcontrib><creatorcontrib>Townsend, Craig A.</creatorcontrib><creatorcontrib>Burkart, Michael D.</creatorcontrib><creatorcontrib>Tsai, Shiou-Chuan</creatorcontrib><title>Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Product template (PT) domains from fungal nonreducing polyketide synthases (NR-PKSs) are responsible for controlling the aldol cyclizations of poly-β-ketone intermediates assembled during the catalytic cycle. Our ability to understand the high regioselective control that PT domains exert is hindered by the inaccessibility of intrinsically unstable poly-β-ketones for in vitro studies. We describe here the crystallographic application of “atom replacement” mimetics in which isoxazole rings linked by thioethers mimic the alternating sites of carbonyls in the poly-β-ketone intermediates. We report the 1.8-Å cocrystal structure of the PksA PT domain from aflatoxin biosynthesis with a heptaketide mimetic tethered to a stably modified 4′-phosphopantetheine, which provides important empirical evidence for a previously proposed mechanism of PT-catalyzed cyclization. Key observations support the proposed deprotonation at C4 of the nascent polyketide by the catalytic His1345 and the role of a protein-coordinated water network to selectively activate the C9 carbonyl for nucleophilic addition. The importance of the 4′-phosphate at the distal end of the pantetheine arm is demonstrated to both facilitate delivery of the heptaketide mimetic deep into the PT active site and anchor one end of this linear array to precisely meter C4 into close proximity to the catalytic His1345. Additional structural features, docking simulations, and mutational experiments characterize protein–substrate mimic interactions, which likely play roles in orienting and stabilizing interactions during the native multistep catalytic cycle. These findings afford a view of a polyketide “atom-replaced” mimetic in a NR-PKS active site that could prove general for other PKS domains.</description><subject>Aldehydes</subject><subject>Anchors</subject><subject>Biological Sciences</subject><subject>Biomimetics</subject><subject>Biosynthesis</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Catalysis</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Docking</subject><subject>Fungi</subject><subject>In vitro methods and tests</subject><subject>Intermediates</subject><subject>Ketones</subject><subject>Mutagenesis, Site-Directed</subject><subject>Pantetheine - isolation &amp; purification</subject><subject>Phosphate</subject><subject>PNAS Plus</subject><subject>Polyketide Synthases - chemistry</subject><subject>Polyketide Synthases - genetics</subject><subject>Polyketide Synthases - metabolism</subject><subject>Polyketides - chemistry</subject><subject>Polyketides - metabolism</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proximity</subject><subject>Simulation</subject><subject>Thioethers</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU9v1DAQxSMEotvCmRPIEue04z9J7AsSqqAgVYIDnC3Xnux6SexgO0j7CfjauNrShdOMNL9580avaV5RuKQw8KslmHxJe1AAlFLxpNlQULTthYKnzQaADa0UTJw15znvAUB1Ep43Z0wKKYCpTfP7a5wOP7B4h2T2c21sJgePkyO5pNWWNZmJmODIjHZngs-VID5kv92VXJsSyZKiqyQpOC-TKUhcnI0PZFyDLT6GSpEQQ8JK-bAly-lkPoSyMxnzi-bZaKaMLx_qRfP944dv15_a2y83n6_f37ZWCF5aHEFY4NxCb3rVCYbKMDl2FJ0cnQUU0vZGIFKjJAV-B2gs75jgo0M3Mn7RvDvqLuvdjM5iKPVBvSQ_m3TQ0Xj9_yT4nd7GX7oTQjJQVeDtg0CKP1fMRe_jmkL1rKmCrpcDG4ZKXR0pm2LOCcfHCxT0fXL6Pjl9Sq5uvPnX2CP_N6oKvD4C-1xiOs17ITmvD_4BGsakhA</recordid><startdate>20170523</startdate><enddate>20170523</enddate><creator>Barajas, Jesus F.</creator><creator>Shakya, Gaurav</creator><creator>Moreno, Gabriel</creator><creator>Rivera, Heriberto</creator><creator>Jackson, David R.</creator><creator>Topper, Caitlyn L.</creator><creator>Vagstad, Anna L.</creator><creator>La Clair, James J.</creator><creator>Townsend, Craig A.</creator><creator>Burkart, Michael D.</creator><creator>Tsai, Shiou-Chuan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20170523</creationdate><title>Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases</title><author>Barajas, Jesus F. ; Shakya, Gaurav ; Moreno, Gabriel ; Rivera, Heriberto ; Jackson, David R. ; Topper, Caitlyn L. ; Vagstad, Anna L. ; La Clair, James J. ; Townsend, Craig A. ; Burkart, Michael D. ; Tsai, Shiou-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-ef04c033c06a69542e9a28f51ed8fdc0e48c6a4ee1a98103b0eac35243fdedf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aldehydes</topic><topic>Anchors</topic><topic>Biological Sciences</topic><topic>Biomimetics</topic><topic>Biosynthesis</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Catalysis</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Docking</topic><topic>Fungi</topic><topic>In vitro methods and tests</topic><topic>Intermediates</topic><topic>Ketones</topic><topic>Mutagenesis, Site-Directed</topic><topic>Pantetheine - isolation &amp; purification</topic><topic>Phosphate</topic><topic>PNAS Plus</topic><topic>Polyketide Synthases - chemistry</topic><topic>Polyketide Synthases - genetics</topic><topic>Polyketide Synthases - metabolism</topic><topic>Polyketides - chemistry</topic><topic>Polyketides - metabolism</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proximity</topic><topic>Simulation</topic><topic>Thioethers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barajas, Jesus F.</creatorcontrib><creatorcontrib>Shakya, Gaurav</creatorcontrib><creatorcontrib>Moreno, Gabriel</creatorcontrib><creatorcontrib>Rivera, Heriberto</creatorcontrib><creatorcontrib>Jackson, David R.</creatorcontrib><creatorcontrib>Topper, Caitlyn L.</creatorcontrib><creatorcontrib>Vagstad, Anna L.</creatorcontrib><creatorcontrib>La Clair, James J.</creatorcontrib><creatorcontrib>Townsend, Craig A.</creatorcontrib><creatorcontrib>Burkart, Michael D.</creatorcontrib><creatorcontrib>Tsai, Shiou-Chuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barajas, Jesus F.</au><au>Shakya, Gaurav</au><au>Moreno, Gabriel</au><au>Rivera, Heriberto</au><au>Jackson, David R.</au><au>Topper, Caitlyn L.</au><au>Vagstad, Anna L.</au><au>La Clair, James J.</au><au>Townsend, Craig A.</au><au>Burkart, Michael D.</au><au>Tsai, Shiou-Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-05-23</date><risdate>2017</risdate><volume>114</volume><issue>21</issue><spage>E4142</spage><epage>E4148</epage><pages>E4142-E4148</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Product template (PT) domains from fungal nonreducing polyketide synthases (NR-PKSs) are responsible for controlling the aldol cyclizations of poly-β-ketone intermediates assembled during the catalytic cycle. Our ability to understand the high regioselective control that PT domains exert is hindered by the inaccessibility of intrinsically unstable poly-β-ketones for in vitro studies. We describe here the crystallographic application of “atom replacement” mimetics in which isoxazole rings linked by thioethers mimic the alternating sites of carbonyls in the poly-β-ketone intermediates. We report the 1.8-Å cocrystal structure of the PksA PT domain from aflatoxin biosynthesis with a heptaketide mimetic tethered to a stably modified 4′-phosphopantetheine, which provides important empirical evidence for a previously proposed mechanism of PT-catalyzed cyclization. Key observations support the proposed deprotonation at C4 of the nascent polyketide by the catalytic His1345 and the role of a protein-coordinated water network to selectively activate the C9 carbonyl for nucleophilic addition. The importance of the 4′-phosphate at the distal end of the pantetheine arm is demonstrated to both facilitate delivery of the heptaketide mimetic deep into the PT active site and anchor one end of this linear array to precisely meter C4 into close proximity to the catalytic His1345. Additional structural features, docking simulations, and mutational experiments characterize protein–substrate mimic interactions, which likely play roles in orienting and stabilizing interactions during the native multistep catalytic cycle. These findings afford a view of a polyketide “atom-replaced” mimetic in a NR-PKS active site that could prove general for other PKS domains.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28484029</pmid><doi>10.1073/pnas.1609001114</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-05, Vol.114 (21), p.E4142-E4148
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5448209
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aldehydes
Anchors
Biological Sciences
Biomimetics
Biosynthesis
Carbonyl compounds
Carbonyls
Catalysis
Crystal structure
Crystallography
Docking
Fungi
In vitro methods and tests
Intermediates
Ketones
Mutagenesis, Site-Directed
Pantetheine - isolation & purification
Phosphate
PNAS Plus
Polyketide Synthases - chemistry
Polyketide Synthases - genetics
Polyketide Synthases - metabolism
Polyketides - chemistry
Polyketides - metabolism
Protein Conformation
Proteins
Proximity
Simulation
Thioethers
title Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyketide%20mimetics%20yield%20structural%20and%20mechanistic%20insights%20into%20product%20template%20domain%20function%20in%20nonreducing%20polyketide%20synthases&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Barajas,%20Jesus%20F.&rft.date=2017-05-23&rft.volume=114&rft.issue=21&rft.spage=E4142&rft.epage=E4148&rft.pages=E4142-E4148&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1609001114&rft_dat=%3Cjstor_pubme%3E26483324%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905687277&rft_id=info:pmid/28484029&rft_jstor_id=26483324&rfr_iscdi=true