Selective targeting of point-mutated KRAS through artificial microRNAs
Mutated protein-coding genes drive the molecular pathogenesis of many diseases, including cancer. Specifically, mutated KRAS is a documented driver for malignant transformation, occurring early during the pathogenesis of cancers such as lung and pancreatic adenocarcinomas. Therapeutically, the indis...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-05, Vol.114 (21), p.E4203-E4212 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mutated protein-coding genes drive the molecular pathogenesis of many diseases, including cancer. Specifically, mutated KRAS is a documented driver for malignant transformation, occurring early during the pathogenesis of cancers such as lung and pancreatic adenocarcinomas. Therapeutically, the indiscriminate targeting of wild-type and point-mutated transcripts represents an important limitation. Here, we leveraged on the design of miRNA-like artificial molecules (amiRNAs) to specifically target point-mutated genes, such as KRAS, without affecting their wild-type counterparts. Compared with an siRNA-like approach, the requirement of perfect complementarity of the microRNA seed region to a given target sequence in the microRNA/target model has proven to be a more efficient strategy, accomplishing the selective targeting of point-mutated KRAS in vitro and in vivo. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1620562114 |