Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry

Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2016-12, Vol.167 (7), p.1839-1852.e21
Hauptverfasser: Wang, Guanshi, Hauver, Jesse, Thomas, Zachary, Darst, Seth A., Pertsinidis, Alexandros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1852.e21
container_issue 7
container_start_page 1839
container_title Cell
container_volume 167
creator Wang, Guanshi
Hauver, Jesse
Thomas, Zachary
Darst, Seth A.
Pertsinidis, Alexandros
description Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves
doi_str_mv 10.1016/j.cell.2016.11.032
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5444671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009286741631604X</els_id><sourcerecordid>1852690538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-2bc76e59562438c7ddf2ed2a07effa8f69c2812dc1e858370d4f52080de75d253</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVpady0X6CHssdeditppZUWSqE4_WNICKTurSBkaeTIaFeutBvwt69cpyG59DRi5vfeiHkIvSW4IZh0H3aNgRAaWt4NIQ1u6TO0ILgXNSOCPkcLjHtay06wM_Qq5x3GWHLOX6IzKnrJREsW6NcPP24D1FcxgJkDVDegQ732A1TtRbUa9LbMq-iq6RaqddJjNsnvJx_Hankwhd8cqqto56D_9lbjBMlBigNM6fAavXA6ZHhzX8_Rz69f1svv9eX1t9Xy82VtGOdTTTdGdMB73lHWSiOsdRQs1ViAc1q6rjdUEmoNAcllK7BljlMssQXBLeXtOfp08t3PmwGsgXFKOqh98oNOBxW1V08no79V23inOGOsE6QYvL83SPH3DHlSg8_H4-oR4pwVkZx2PeatLCg9oSbFnBO4hzUEq2MsaqeOSnWMRRGiSixF9O7xBx8k_3IowMcTAOVMdx6SysbDaMD6BGZSNvr_-f8B2C2f2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852690538</pqid></control><display><type>article</type><title>Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives (Open Access)</source><source>EZB Electronic Journals Library</source><creator>Wang, Guanshi ; Hauver, Jesse ; Thomas, Zachary ; Darst, Seth A. ; Pertsinidis, Alexandros</creator><creatorcontrib>Wang, Guanshi ; Hauver, Jesse ; Thomas, Zachary ; Darst, Seth A. ; Pertsinidis, Alexandros</creatorcontrib><description>Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves &lt;2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation. [Display omitted] •Real-time single-molecule tracking with &lt;2 nm 3D localization precision•3D super-resolution imaging of molecular complexes in cells via particle averaging•Dynamic single-molecule visualization of the full E. coli RNAP transcription cycle•Dissection of promoter clearance kinetics and fate of σ70 initiation factors Visualizing the movement of individual E. coli RNA polymerases through the complete transcription cycle is possible thanks to a novel 3D single-molecule super-resolution imaging approach.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2016.11.032</identifier><identifier>PMID: 27984731</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>axial localization ; DNA-Directed RNA Polymerases - metabolism ; Escherichia coli - metabolism ; holoenzyme ; Humans ; Imaging, Three-Dimensional - methods ; interferometry ; Interferometry - methods ; nuclear pore complex ; RNA polymerase ; sigma factor ; Single Molecule Imaging - methods ; single-molecule ; super-resolution imaging ; transcription ; transcription cycle ; Transcription, Genetic</subject><ispartof>Cell, 2016-12, Vol.167 (7), p.1839-1852.e21</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-2bc76e59562438c7ddf2ed2a07effa8f69c2812dc1e858370d4f52080de75d253</citedby><cites>FETCH-LOGICAL-c455t-2bc76e59562438c7ddf2ed2a07effa8f69c2812dc1e858370d4f52080de75d253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2016.11.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27984731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Guanshi</creatorcontrib><creatorcontrib>Hauver, Jesse</creatorcontrib><creatorcontrib>Thomas, Zachary</creatorcontrib><creatorcontrib>Darst, Seth A.</creatorcontrib><creatorcontrib>Pertsinidis, Alexandros</creatorcontrib><title>Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry</title><title>Cell</title><addtitle>Cell</addtitle><description>Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves &lt;2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation. [Display omitted] •Real-time single-molecule tracking with &lt;2 nm 3D localization precision•3D super-resolution imaging of molecular complexes in cells via particle averaging•Dynamic single-molecule visualization of the full E. coli RNAP transcription cycle•Dissection of promoter clearance kinetics and fate of σ70 initiation factors Visualizing the movement of individual E. coli RNA polymerases through the complete transcription cycle is possible thanks to a novel 3D single-molecule super-resolution imaging approach.</description><subject>axial localization</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Escherichia coli - metabolism</subject><subject>holoenzyme</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>interferometry</subject><subject>Interferometry - methods</subject><subject>nuclear pore complex</subject><subject>RNA polymerase</subject><subject>sigma factor</subject><subject>Single Molecule Imaging - methods</subject><subject>single-molecule</subject><subject>super-resolution imaging</subject><subject>transcription</subject><subject>transcription cycle</subject><subject>Transcription, Genetic</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9rGzEQxUVpady0X6CHssdeditppZUWSqE4_WNICKTurSBkaeTIaFeutBvwt69cpyG59DRi5vfeiHkIvSW4IZh0H3aNgRAaWt4NIQ1u6TO0ILgXNSOCPkcLjHtay06wM_Qq5x3GWHLOX6IzKnrJREsW6NcPP24D1FcxgJkDVDegQ732A1TtRbUa9LbMq-iq6RaqddJjNsnvJx_Hankwhd8cqqto56D_9lbjBMlBigNM6fAavXA6ZHhzX8_Rz69f1svv9eX1t9Xy82VtGOdTTTdGdMB73lHWSiOsdRQs1ViAc1q6rjdUEmoNAcllK7BljlMssQXBLeXtOfp08t3PmwGsgXFKOqh98oNOBxW1V08no79V23inOGOsE6QYvL83SPH3DHlSg8_H4-oR4pwVkZx2PeatLCg9oSbFnBO4hzUEq2MsaqeOSnWMRRGiSixF9O7xBx8k_3IowMcTAOVMdx6SysbDaMD6BGZSNvr_-f8B2C2f2w</recordid><startdate>20161215</startdate><enddate>20161215</enddate><creator>Wang, Guanshi</creator><creator>Hauver, Jesse</creator><creator>Thomas, Zachary</creator><creator>Darst, Seth A.</creator><creator>Pertsinidis, Alexandros</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161215</creationdate><title>Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry</title><author>Wang, Guanshi ; Hauver, Jesse ; Thomas, Zachary ; Darst, Seth A. ; Pertsinidis, Alexandros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-2bc76e59562438c7ddf2ed2a07effa8f69c2812dc1e858370d4f52080de75d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>axial localization</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Escherichia coli - metabolism</topic><topic>holoenzyme</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>interferometry</topic><topic>Interferometry - methods</topic><topic>nuclear pore complex</topic><topic>RNA polymerase</topic><topic>sigma factor</topic><topic>Single Molecule Imaging - methods</topic><topic>single-molecule</topic><topic>super-resolution imaging</topic><topic>transcription</topic><topic>transcription cycle</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guanshi</creatorcontrib><creatorcontrib>Hauver, Jesse</creatorcontrib><creatorcontrib>Thomas, Zachary</creatorcontrib><creatorcontrib>Darst, Seth A.</creatorcontrib><creatorcontrib>Pertsinidis, Alexandros</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guanshi</au><au>Hauver, Jesse</au><au>Thomas, Zachary</au><au>Darst, Seth A.</au><au>Pertsinidis, Alexandros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2016-12-15</date><risdate>2016</risdate><volume>167</volume><issue>7</issue><spage>1839</spage><epage>1852.e21</epage><pages>1839-1852.e21</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves &lt;2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation. [Display omitted] •Real-time single-molecule tracking with &lt;2 nm 3D localization precision•3D super-resolution imaging of molecular complexes in cells via particle averaging•Dynamic single-molecule visualization of the full E. coli RNAP transcription cycle•Dissection of promoter clearance kinetics and fate of σ70 initiation factors Visualizing the movement of individual E. coli RNA polymerases through the complete transcription cycle is possible thanks to a novel 3D single-molecule super-resolution imaging approach.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27984731</pmid><doi>10.1016/j.cell.2016.11.032</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2016-12, Vol.167 (7), p.1839-1852.e21
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5444671
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives (Open Access); EZB Electronic Journals Library
subjects axial localization
DNA-Directed RNA Polymerases - metabolism
Escherichia coli - metabolism
holoenzyme
Humans
Imaging, Three-Dimensional - methods
interferometry
Interferometry - methods
nuclear pore complex
RNA polymerase
sigma factor
Single Molecule Imaging - methods
single-molecule
super-resolution imaging
transcription
transcription cycle
Transcription, Genetic
title Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A18%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Molecule%20Real-Time%203D%20Imaging%20of%20the%20Transcription%20Cycle%20by%20Modulation%20Interferometry&rft.jtitle=Cell&rft.au=Wang,%20Guanshi&rft.date=2016-12-15&rft.volume=167&rft.issue=7&rft.spage=1839&rft.epage=1852.e21&rft.pages=1839-1852.e21&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2016.11.032&rft_dat=%3Cproquest_pubme%3E1852690538%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852690538&rft_id=info:pmid/27984731&rft_els_id=S009286741631604X&rfr_iscdi=true