Alcohol‐dependent molecular adaptations of the NMDA receptor system

Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes, brain and behavior brain and behavior, 2017-01, Vol.16 (1), p.139-148
Hauptverfasser: Morisot, N., Ron, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 139
container_title Genes, brain and behavior
container_volume 16
creator Morisot, N.
Ron, D.
description Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors. This review focuses on findings in humans and rodents that support the implication of N‐methyl‐d‐aspartate receptor signaling in the alcohol use disorders.
doi_str_mv 10.1111/gbb.12363
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5444330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868303090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5703-3ba7c7d9bef4145f9cce0b489d45fbb161d8fce60b2b10856e586d7dd5dc855d3</originalsourceid><addsrcrecordid>eNp9kctq3DAUhkVpaG5d9AWKoZtmMYk0kmxpU5jJHdJ000J3QpfjjINsOZLdMLs8Qp4xTxIlkw5podVGOujjO-fwI_SB4H2Sz8GVMftkSkv6Bm2REpMJEfTn2_WbiU20ndI1xqSigrxDm9NK4pJJtoWOZ96GRfAPd_cOeugcdEPRBg929DoW2ul-0EMTulSEuhgWUFx-PZoVESz0Q4hFWqYB2l20UWuf4P3LvYN-nBx_PzybXHw7PT-cXUwsrzCdUKMrWzlpoGaE8VpaC9gwIV0ujCElcaK2UGIzNQQLXgIXpauc484Kzh3dQV9W3n40LTibh43aqz42rY5LFXSj_vzpmoW6Cr8UZ4xRirPg84sghpsR0qDaJlnwXncQxqSIKEXGsHxCP_2FXocxdnk9RSTmUlQV5_-lBJe5rcTTTO2tKBtDShHq9cgEq6cIVY5QPUeY2Y-vd1yTvzPLwMEKuG08LP9tUqfz-Ur5CF6wpkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859444902</pqid></control><display><type>article</type><title>Alcohol‐dependent molecular adaptations of the NMDA receptor system</title><source>Wiley-Blackwell Open Access Titles</source><creator>Morisot, N. ; Ron, D.</creator><creatorcontrib>Morisot, N. ; Ron, D.</creatorcontrib><description>Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors. This review focuses on findings in humans and rodents that support the implication of N‐methyl‐d‐aspartate receptor signaling in the alcohol use disorders.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/gbb.12363</identifier><identifier>PMID: 27906494</identifier><identifier>CODEN: GBBEAO</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adaptation, Physiological ; Addiction ; alcohol ; Alcohol use ; Alcohol-Related Disorders - genetics ; Alcohol-Related Disorders - metabolism ; Alcohol-Related Disorders - physiopathology ; AMPA ; amygdala ; Animals ; Aversion learning ; Behavior ; Behavioral plasticity ; Ca2+/calmodulin-dependent protein kinase II ; Calcium-binding protein ; CaMKII ; Drinking behavior ; Enzymes ; Fyn ; Fyn protein ; Glutamic acid receptors (ionotropic) ; Humans ; kinase ; Kinases ; Mechanistic Target of Rapamycin Complex 1 ; Memory ; Motivation ; mTOR ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; N-Methyl-D-aspartic acid receptors ; NMDA ; nucleus accumbens ; phosphatase ; Protein kinase ; PTPalpha ; Rapamycin ; Receptors, N-Methyl-D-Aspartate - genetics ; Receptors, N-Methyl-D-Aspartate - metabolism ; Risk factors ; Serial learning ; Signal Transduction ; signaling ; STEP ; striatum ; Synaptic plasticity ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Genes, brain and behavior, 2017-01, Vol.16 (1), p.139-148</ispartof><rights>2016 John Wiley &amp; Sons Ltd and International Behavioural and Neural Genetics Society</rights><rights>2016 John Wiley &amp; Sons Ltd and International Behavioural and Neural Genetics Society.</rights><rights>2017 John Wiley &amp; Sons Ltd and International Behavioural and Neural Genetics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5703-3ba7c7d9bef4145f9cce0b489d45fbb161d8fce60b2b10856e586d7dd5dc855d3</citedby><cites>FETCH-LOGICAL-c5703-3ba7c7d9bef4145f9cce0b489d45fbb161d8fce60b2b10856e586d7dd5dc855d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgbb.12363$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgbb.12363$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,11560,27922,27923,45572,45573,46050,46474</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbb.12363$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27906494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morisot, N.</creatorcontrib><creatorcontrib>Ron, D.</creatorcontrib><title>Alcohol‐dependent molecular adaptations of the NMDA receptor system</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors. This review focuses on findings in humans and rodents that support the implication of N‐methyl‐d‐aspartate receptor signaling in the alcohol use disorders.</description><subject>Adaptation, Physiological</subject><subject>Addiction</subject><subject>alcohol</subject><subject>Alcohol use</subject><subject>Alcohol-Related Disorders - genetics</subject><subject>Alcohol-Related Disorders - metabolism</subject><subject>Alcohol-Related Disorders - physiopathology</subject><subject>AMPA</subject><subject>amygdala</subject><subject>Animals</subject><subject>Aversion learning</subject><subject>Behavior</subject><subject>Behavioral plasticity</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Calcium-binding protein</subject><subject>CaMKII</subject><subject>Drinking behavior</subject><subject>Enzymes</subject><subject>Fyn</subject><subject>Fyn protein</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Humans</subject><subject>kinase</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Memory</subject><subject>Motivation</subject><subject>mTOR</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>NMDA</subject><subject>nucleus accumbens</subject><subject>phosphatase</subject><subject>Protein kinase</subject><subject>PTPalpha</subject><subject>Rapamycin</subject><subject>Receptors, N-Methyl-D-Aspartate - genetics</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Risk factors</subject><subject>Serial learning</subject><subject>Signal Transduction</subject><subject>signaling</subject><subject>STEP</subject><subject>striatum</subject><subject>Synaptic plasticity</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctq3DAUhkVpaG5d9AWKoZtmMYk0kmxpU5jJHdJ000J3QpfjjINsOZLdMLs8Qp4xTxIlkw5podVGOujjO-fwI_SB4H2Sz8GVMftkSkv6Bm2REpMJEfTn2_WbiU20ndI1xqSigrxDm9NK4pJJtoWOZ96GRfAPd_cOeugcdEPRBg929DoW2ul-0EMTulSEuhgWUFx-PZoVESz0Q4hFWqYB2l20UWuf4P3LvYN-nBx_PzybXHw7PT-cXUwsrzCdUKMrWzlpoGaE8VpaC9gwIV0ujCElcaK2UGIzNQQLXgIXpauc484Kzh3dQV9W3n40LTibh43aqz42rY5LFXSj_vzpmoW6Cr8UZ4xRirPg84sghpsR0qDaJlnwXncQxqSIKEXGsHxCP_2FXocxdnk9RSTmUlQV5_-lBJe5rcTTTO2tKBtDShHq9cgEq6cIVY5QPUeY2Y-vd1yTvzPLwMEKuG08LP9tUqfz-Ur5CF6wpkA</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Morisot, N.</creator><creator>Ron, D.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201701</creationdate><title>Alcohol‐dependent molecular adaptations of the NMDA receptor system</title><author>Morisot, N. ; Ron, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5703-3ba7c7d9bef4145f9cce0b489d45fbb161d8fce60b2b10856e586d7dd5dc855d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological</topic><topic>Addiction</topic><topic>alcohol</topic><topic>Alcohol use</topic><topic>Alcohol-Related Disorders - genetics</topic><topic>Alcohol-Related Disorders - metabolism</topic><topic>Alcohol-Related Disorders - physiopathology</topic><topic>AMPA</topic><topic>amygdala</topic><topic>Animals</topic><topic>Aversion learning</topic><topic>Behavior</topic><topic>Behavioral plasticity</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Calcium-binding protein</topic><topic>CaMKII</topic><topic>Drinking behavior</topic><topic>Enzymes</topic><topic>Fyn</topic><topic>Fyn protein</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Humans</topic><topic>kinase</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Memory</topic><topic>Motivation</topic><topic>mTOR</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>NMDA</topic><topic>nucleus accumbens</topic><topic>phosphatase</topic><topic>Protein kinase</topic><topic>PTPalpha</topic><topic>Rapamycin</topic><topic>Receptors, N-Methyl-D-Aspartate - genetics</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Risk factors</topic><topic>Serial learning</topic><topic>Signal Transduction</topic><topic>signaling</topic><topic>STEP</topic><topic>striatum</topic><topic>Synaptic plasticity</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morisot, N.</creatorcontrib><creatorcontrib>Ron, D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morisot, N.</au><au>Ron, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alcohol‐dependent molecular adaptations of the NMDA receptor system</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2017-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>139</spage><epage>148</epage><pages>139-148</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><coden>GBBEAO</coden><abstract>Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors. This review focuses on findings in humans and rodents that support the implication of N‐methyl‐d‐aspartate receptor signaling in the alcohol use disorders.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>27906494</pmid><doi>10.1111/gbb.12363</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1601-1848
ispartof Genes, brain and behavior, 2017-01, Vol.16 (1), p.139-148
issn 1601-1848
1601-183X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5444330
source Wiley-Blackwell Open Access Titles
subjects Adaptation, Physiological
Addiction
alcohol
Alcohol use
Alcohol-Related Disorders - genetics
Alcohol-Related Disorders - metabolism
Alcohol-Related Disorders - physiopathology
AMPA
amygdala
Animals
Aversion learning
Behavior
Behavioral plasticity
Ca2+/calmodulin-dependent protein kinase II
Calcium-binding protein
CaMKII
Drinking behavior
Enzymes
Fyn
Fyn protein
Glutamic acid receptors (ionotropic)
Humans
kinase
Kinases
Mechanistic Target of Rapamycin Complex 1
Memory
Motivation
mTOR
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
N-Methyl-D-aspartic acid receptors
NMDA
nucleus accumbens
phosphatase
Protein kinase
PTPalpha
Rapamycin
Receptors, N-Methyl-D-Aspartate - genetics
Receptors, N-Methyl-D-Aspartate - metabolism
Risk factors
Serial learning
Signal Transduction
signaling
STEP
striatum
Synaptic plasticity
TOR protein
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
title Alcohol‐dependent molecular adaptations of the NMDA receptor system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alcohol%E2%80%90dependent%20molecular%20adaptations%20of%20the%20NMDA%20receptor%20system&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Morisot,%20N.&rft.date=2017-01&rft.volume=16&rft.issue=1&rft.spage=139&rft.epage=148&rft.pages=139-148&rft.issn=1601-1848&rft.eissn=1601-183X&rft.coden=GBBEAO&rft_id=info:doi/10.1111/gbb.12363&rft_dat=%3Cproquest_24P%3E1868303090%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859444902&rft_id=info:pmid/27906494&rfr_iscdi=true