Alcohol‐dependent molecular adaptations of the NMDA receptor system
Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate rec...
Gespeichert in:
Veröffentlicht in: | Genes, brain and behavior brain and behavior, 2017-01, Vol.16 (1), p.139-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 1 |
container_start_page | 139 |
container_title | Genes, brain and behavior |
container_volume | 16 |
creator | Morisot, N. Ron, D. |
description | Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
This review focuses on findings in humans and rodents that support the implication of N‐methyl‐d‐aspartate receptor signaling in the alcohol use disorders. |
doi_str_mv | 10.1111/gbb.12363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5444330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868303090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5703-3ba7c7d9bef4145f9cce0b489d45fbb161d8fce60b2b10856e586d7dd5dc855d3</originalsourceid><addsrcrecordid>eNp9kctq3DAUhkVpaG5d9AWKoZtmMYk0kmxpU5jJHdJ000J3QpfjjINsOZLdMLs8Qp4xTxIlkw5podVGOujjO-fwI_SB4H2Sz8GVMftkSkv6Bm2REpMJEfTn2_WbiU20ndI1xqSigrxDm9NK4pJJtoWOZ96GRfAPd_cOeugcdEPRBg929DoW2ul-0EMTulSEuhgWUFx-PZoVESz0Q4hFWqYB2l20UWuf4P3LvYN-nBx_PzybXHw7PT-cXUwsrzCdUKMrWzlpoGaE8VpaC9gwIV0ujCElcaK2UGIzNQQLXgIXpauc484Kzh3dQV9W3n40LTibh43aqz42rY5LFXSj_vzpmoW6Cr8UZ4xRirPg84sghpsR0qDaJlnwXncQxqSIKEXGsHxCP_2FXocxdnk9RSTmUlQV5_-lBJe5rcTTTO2tKBtDShHq9cgEq6cIVY5QPUeY2Y-vd1yTvzPLwMEKuG08LP9tUqfz-Ur5CF6wpkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1859444902</pqid></control><display><type>article</type><title>Alcohol‐dependent molecular adaptations of the NMDA receptor system</title><source>Wiley-Blackwell Open Access Titles</source><creator>Morisot, N. ; Ron, D.</creator><creatorcontrib>Morisot, N. ; Ron, D.</creatorcontrib><description>Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
This review focuses on findings in humans and rodents that support the implication of N‐methyl‐d‐aspartate receptor signaling in the alcohol use disorders.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/gbb.12363</identifier><identifier>PMID: 27906494</identifier><identifier>CODEN: GBBEAO</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adaptation, Physiological ; Addiction ; alcohol ; Alcohol use ; Alcohol-Related Disorders - genetics ; Alcohol-Related Disorders - metabolism ; Alcohol-Related Disorders - physiopathology ; AMPA ; amygdala ; Animals ; Aversion learning ; Behavior ; Behavioral plasticity ; Ca2+/calmodulin-dependent protein kinase II ; Calcium-binding protein ; CaMKII ; Drinking behavior ; Enzymes ; Fyn ; Fyn protein ; Glutamic acid receptors (ionotropic) ; Humans ; kinase ; Kinases ; Mechanistic Target of Rapamycin Complex 1 ; Memory ; Motivation ; mTOR ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; N-Methyl-D-aspartic acid receptors ; NMDA ; nucleus accumbens ; phosphatase ; Protein kinase ; PTPalpha ; Rapamycin ; Receptors, N-Methyl-D-Aspartate - genetics ; Receptors, N-Methyl-D-Aspartate - metabolism ; Risk factors ; Serial learning ; Signal Transduction ; signaling ; STEP ; striatum ; Synaptic plasticity ; TOR protein ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Genes, brain and behavior, 2017-01, Vol.16 (1), p.139-148</ispartof><rights>2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society</rights><rights>2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.</rights><rights>2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5703-3ba7c7d9bef4145f9cce0b489d45fbb161d8fce60b2b10856e586d7dd5dc855d3</citedby><cites>FETCH-LOGICAL-c5703-3ba7c7d9bef4145f9cce0b489d45fbb161d8fce60b2b10856e586d7dd5dc855d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgbb.12363$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgbb.12363$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,11560,27922,27923,45572,45573,46050,46474</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgbb.12363$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27906494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morisot, N.</creatorcontrib><creatorcontrib>Ron, D.</creatorcontrib><title>Alcohol‐dependent molecular adaptations of the NMDA receptor system</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
This review focuses on findings in humans and rodents that support the implication of N‐methyl‐d‐aspartate receptor signaling in the alcohol use disorders.</description><subject>Adaptation, Physiological</subject><subject>Addiction</subject><subject>alcohol</subject><subject>Alcohol use</subject><subject>Alcohol-Related Disorders - genetics</subject><subject>Alcohol-Related Disorders - metabolism</subject><subject>Alcohol-Related Disorders - physiopathology</subject><subject>AMPA</subject><subject>amygdala</subject><subject>Animals</subject><subject>Aversion learning</subject><subject>Behavior</subject><subject>Behavioral plasticity</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Calcium-binding protein</subject><subject>CaMKII</subject><subject>Drinking behavior</subject><subject>Enzymes</subject><subject>Fyn</subject><subject>Fyn protein</subject><subject>Glutamic acid receptors (ionotropic)</subject><subject>Humans</subject><subject>kinase</subject><subject>Kinases</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Memory</subject><subject>Motivation</subject><subject>mTOR</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>N-Methyl-D-aspartic acid receptors</subject><subject>NMDA</subject><subject>nucleus accumbens</subject><subject>phosphatase</subject><subject>Protein kinase</subject><subject>PTPalpha</subject><subject>Rapamycin</subject><subject>Receptors, N-Methyl-D-Aspartate - genetics</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Risk factors</subject><subject>Serial learning</subject><subject>Signal Transduction</subject><subject>signaling</subject><subject>STEP</subject><subject>striatum</subject><subject>Synaptic plasticity</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctq3DAUhkVpaG5d9AWKoZtmMYk0kmxpU5jJHdJ000J3QpfjjINsOZLdMLs8Qp4xTxIlkw5podVGOujjO-fwI_SB4H2Sz8GVMftkSkv6Bm2REpMJEfTn2_WbiU20ndI1xqSigrxDm9NK4pJJtoWOZ96GRfAPd_cOeugcdEPRBg929DoW2ul-0EMTulSEuhgWUFx-PZoVESz0Q4hFWqYB2l20UWuf4P3LvYN-nBx_PzybXHw7PT-cXUwsrzCdUKMrWzlpoGaE8VpaC9gwIV0ujCElcaK2UGIzNQQLXgIXpauc484Kzh3dQV9W3n40LTibh43aqz42rY5LFXSj_vzpmoW6Cr8UZ4xRirPg84sghpsR0qDaJlnwXncQxqSIKEXGsHxCP_2FXocxdnk9RSTmUlQV5_-lBJe5rcTTTO2tKBtDShHq9cgEq6cIVY5QPUeY2Y-vd1yTvzPLwMEKuG08LP9tUqfz-Ur5CF6wpkA</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Morisot, N.</creator><creator>Ron, D.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201701</creationdate><title>Alcohol‐dependent molecular adaptations of the NMDA receptor system</title><author>Morisot, N. ; Ron, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5703-3ba7c7d9bef4145f9cce0b489d45fbb161d8fce60b2b10856e586d7dd5dc855d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation, Physiological</topic><topic>Addiction</topic><topic>alcohol</topic><topic>Alcohol use</topic><topic>Alcohol-Related Disorders - genetics</topic><topic>Alcohol-Related Disorders - metabolism</topic><topic>Alcohol-Related Disorders - physiopathology</topic><topic>AMPA</topic><topic>amygdala</topic><topic>Animals</topic><topic>Aversion learning</topic><topic>Behavior</topic><topic>Behavioral plasticity</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Calcium-binding protein</topic><topic>CaMKII</topic><topic>Drinking behavior</topic><topic>Enzymes</topic><topic>Fyn</topic><topic>Fyn protein</topic><topic>Glutamic acid receptors (ionotropic)</topic><topic>Humans</topic><topic>kinase</topic><topic>Kinases</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Memory</topic><topic>Motivation</topic><topic>mTOR</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>N-Methyl-D-aspartic acid receptors</topic><topic>NMDA</topic><topic>nucleus accumbens</topic><topic>phosphatase</topic><topic>Protein kinase</topic><topic>PTPalpha</topic><topic>Rapamycin</topic><topic>Receptors, N-Methyl-D-Aspartate - genetics</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Risk factors</topic><topic>Serial learning</topic><topic>Signal Transduction</topic><topic>signaling</topic><topic>STEP</topic><topic>striatum</topic><topic>Synaptic plasticity</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morisot, N.</creatorcontrib><creatorcontrib>Ron, D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morisot, N.</au><au>Ron, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alcohol‐dependent molecular adaptations of the NMDA receptor system</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2017-01</date><risdate>2017</risdate><volume>16</volume><issue>1</issue><spage>139</spage><epage>148</epage><pages>139-148</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><coden>GBBEAO</coden><abstract>Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.
This review focuses on findings in humans and rodents that support the implication of N‐methyl‐d‐aspartate receptor signaling in the alcohol use disorders.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>27906494</pmid><doi>10.1111/gbb.12363</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1601-1848 |
ispartof | Genes, brain and behavior, 2017-01, Vol.16 (1), p.139-148 |
issn | 1601-1848 1601-183X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5444330 |
source | Wiley-Blackwell Open Access Titles |
subjects | Adaptation, Physiological Addiction alcohol Alcohol use Alcohol-Related Disorders - genetics Alcohol-Related Disorders - metabolism Alcohol-Related Disorders - physiopathology AMPA amygdala Animals Aversion learning Behavior Behavioral plasticity Ca2+/calmodulin-dependent protein kinase II Calcium-binding protein CaMKII Drinking behavior Enzymes Fyn Fyn protein Glutamic acid receptors (ionotropic) Humans kinase Kinases Mechanistic Target of Rapamycin Complex 1 Memory Motivation mTOR Multiprotein Complexes - genetics Multiprotein Complexes - metabolism N-Methyl-D-aspartic acid receptors NMDA nucleus accumbens phosphatase Protein kinase PTPalpha Rapamycin Receptors, N-Methyl-D-Aspartate - genetics Receptors, N-Methyl-D-Aspartate - metabolism Risk factors Serial learning Signal Transduction signaling STEP striatum Synaptic plasticity TOR protein TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
title | Alcohol‐dependent molecular adaptations of the NMDA receptor system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alcohol%E2%80%90dependent%20molecular%20adaptations%20of%20the%20NMDA%20receptor%20system&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Morisot,%20N.&rft.date=2017-01&rft.volume=16&rft.issue=1&rft.spage=139&rft.epage=148&rft.pages=139-148&rft.issn=1601-1848&rft.eissn=1601-183X&rft.coden=GBBEAO&rft_id=info:doi/10.1111/gbb.12363&rft_dat=%3Cproquest_24P%3E1868303090%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1859444902&rft_id=info:pmid/27906494&rfr_iscdi=true |