An Agent-Based Approach for Modeling Molecular Self-Organization
Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochast...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-01, Vol.102 (2), p.255-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 2 |
container_start_page | 255 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Troisi, Alessandro Wong, Vance Ratner, Mark A. |
description | Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the problem of packing rigid shapes on a lattice to verify that this algorithm produces more nearly optimal aggregates with less computational effort than comparable Monte Carlo simulations. |
doi_str_mv | 10.1073/pnas.0408308102 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_544319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3374232</jstor_id><sourcerecordid>3374232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-4c3ccd27c9fa014be575b9041671f70f7f08c6161fcd3d9d0ae3d358a52a5ecd3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokNhzQZQ1AW7tPf6EScLJKYVL6moC2BteRx7mpHHDnaCgF-PRzPqFBbIC1v3fOfqWIeQ5wjnCJJdjEHnc-DQMmgR6AOyQOiwbngHD8kCgMq65ZSfkCc5bwCgEy08JicoGioQ2gV5uwzVcm3DVF_qbPtqOY4panNbuZiqz7G3fgjr8vDWzF6n6ov1rr5Jax2G33oaYnhKHjnts312uE_Jt_fvvl59rK9vPny6Wl7Xhnc41dwwY3oqTec0IF9ZIcWqA46NRCfBSQetabBBZ3rWdz1oy3omWi2oFrbMTsmb_d5xXm1tb0rkpL0a07DV6ZeKelB_K2G4Vev4QwnOGXbF__rgT_H7bPOktkM21nsdbJyzaiRrkHEo4Nk_4CbOKZS_KQrIWo6CFehiD5kUc07W3QVBULtm1K4ZdWymOF7dz3_kD1XcC7hzHtdRVY4Qys3eT_bnVMCX_wOL_mKvb_IU0x3AmOSUUfYHHLuqeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201384153</pqid></control><display><type>article</type><title>An Agent-Based Approach for Modeling Molecular Self-Organization</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Troisi, Alessandro ; Wong, Vance ; Ratner, Mark A.</creator><creatorcontrib>Troisi, Alessandro ; Wong, Vance ; Ratner, Mark A.</creatorcontrib><description>Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the problem of packing rigid shapes on a lattice to verify that this algorithm produces more nearly optimal aggregates with less computational effort than comparable Monte Carlo simulations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0408308102</identifier><identifier>PMID: 15625108</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Behavior modeling ; Chemistry ; Computer based modeling ; Computer Simulation ; Crystal lattices ; Determinism ; Dimers ; Lead ; Metropolitan areas ; Modeling ; Models, Molecular ; Molecules ; Monte Carlo simulation ; Physical Sciences ; Self assembly ; Stochastic methods ; Stochastic Processes</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (2), p.255-260</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 11, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-4c3ccd27c9fa014be575b9041671f70f7f08c6161fcd3d9d0ae3d358a52a5ecd3</citedby><cites>FETCH-LOGICAL-c491t-4c3ccd27c9fa014be575b9041671f70f7f08c6161fcd3d9d0ae3d358a52a5ecd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/2.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3374232$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3374232$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15625108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Troisi, Alessandro</creatorcontrib><creatorcontrib>Wong, Vance</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><title>An Agent-Based Approach for Modeling Molecular Self-Organization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the problem of packing rigid shapes on a lattice to verify that this algorithm produces more nearly optimal aggregates with less computational effort than comparable Monte Carlo simulations.</description><subject>Algorithms</subject><subject>Behavior modeling</subject><subject>Chemistry</subject><subject>Computer based modeling</subject><subject>Computer Simulation</subject><subject>Crystal lattices</subject><subject>Determinism</subject><subject>Dimers</subject><subject>Lead</subject><subject>Metropolitan areas</subject><subject>Modeling</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Monte Carlo simulation</subject><subject>Physical Sciences</subject><subject>Self assembly</subject><subject>Stochastic methods</subject><subject>Stochastic Processes</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EokNhzQZQ1AW7tPf6EScLJKYVL6moC2BteRx7mpHHDnaCgF-PRzPqFBbIC1v3fOfqWIeQ5wjnCJJdjEHnc-DQMmgR6AOyQOiwbngHD8kCgMq65ZSfkCc5bwCgEy08JicoGioQ2gV5uwzVcm3DVF_qbPtqOY4panNbuZiqz7G3fgjr8vDWzF6n6ov1rr5Jax2G33oaYnhKHjnts312uE_Jt_fvvl59rK9vPny6Wl7Xhnc41dwwY3oqTec0IF9ZIcWqA46NRCfBSQetabBBZ3rWdz1oy3omWi2oFrbMTsmb_d5xXm1tb0rkpL0a07DV6ZeKelB_K2G4Vev4QwnOGXbF__rgT_H7bPOktkM21nsdbJyzaiRrkHEo4Nk_4CbOKZS_KQrIWo6CFehiD5kUc07W3QVBULtm1K4ZdWymOF7dz3_kD1XcC7hzHtdRVY4Qys3eT_bnVMCX_wOL_mKvb_IU0x3AmOSUUfYHHLuqeQ</recordid><startdate>20050111</startdate><enddate>20050111</enddate><creator>Troisi, Alessandro</creator><creator>Wong, Vance</creator><creator>Ratner, Mark A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050111</creationdate><title>An Agent-Based Approach for Modeling Molecular Self-Organization</title><author>Troisi, Alessandro ; Wong, Vance ; Ratner, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-4c3ccd27c9fa014be575b9041671f70f7f08c6161fcd3d9d0ae3d358a52a5ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Behavior modeling</topic><topic>Chemistry</topic><topic>Computer based modeling</topic><topic>Computer Simulation</topic><topic>Crystal lattices</topic><topic>Determinism</topic><topic>Dimers</topic><topic>Lead</topic><topic>Metropolitan areas</topic><topic>Modeling</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Monte Carlo simulation</topic><topic>Physical Sciences</topic><topic>Self assembly</topic><topic>Stochastic methods</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troisi, Alessandro</creatorcontrib><creatorcontrib>Wong, Vance</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troisi, Alessandro</au><au>Wong, Vance</au><au>Ratner, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Agent-Based Approach for Modeling Molecular Self-Organization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-01-11</date><risdate>2005</risdate><volume>102</volume><issue>2</issue><spage>255</spage><epage>260</epage><pages>255-260</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the problem of packing rigid shapes on a lattice to verify that this algorithm produces more nearly optimal aggregates with less computational effort than comparable Monte Carlo simulations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15625108</pmid><doi>10.1073/pnas.0408308102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (2), p.255-260 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_544319 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Behavior modeling Chemistry Computer based modeling Computer Simulation Crystal lattices Determinism Dimers Lead Metropolitan areas Modeling Models, Molecular Molecules Monte Carlo simulation Physical Sciences Self assembly Stochastic methods Stochastic Processes |
title | An Agent-Based Approach for Modeling Molecular Self-Organization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Agent-Based%20Approach%20for%20Modeling%20Molecular%20Self-Organization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Troisi,%20Alessandro&rft.date=2005-01-11&rft.volume=102&rft.issue=2&rft.spage=255&rft.epage=260&rft.pages=255-260&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0408308102&rft_dat=%3Cjstor_pubme%3E3374232%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201384153&rft_id=info:pmid/15625108&rft_jstor_id=3374232&rfr_iscdi=true |