An Agent-Based Approach for Modeling Molecular Self-Organization

Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-01, Vol.102 (2), p.255-260
Hauptverfasser: Troisi, Alessandro, Wong, Vance, Ratner, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 2
container_start_page 255
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Troisi, Alessandro
Wong, Vance
Ratner, Mark A.
description Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the problem of packing rigid shapes on a lattice to verify that this algorithm produces more nearly optimal aggregates with less computational effort than comparable Monte Carlo simulations.
doi_str_mv 10.1073/pnas.0408308102
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_544319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3374232</jstor_id><sourcerecordid>3374232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-4c3ccd27c9fa014be575b9041671f70f7f08c6161fcd3d9d0ae3d358a52a5ecd3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokNhzQZQ1AW7tPf6EScLJKYVL6moC2BteRx7mpHHDnaCgF-PRzPqFBbIC1v3fOfqWIeQ5wjnCJJdjEHnc-DQMmgR6AOyQOiwbngHD8kCgMq65ZSfkCc5bwCgEy08JicoGioQ2gV5uwzVcm3DVF_qbPtqOY4panNbuZiqz7G3fgjr8vDWzF6n6ov1rr5Jax2G33oaYnhKHjnts312uE_Jt_fvvl59rK9vPny6Wl7Xhnc41dwwY3oqTec0IF9ZIcWqA46NRCfBSQetabBBZ3rWdz1oy3omWi2oFrbMTsmb_d5xXm1tb0rkpL0a07DV6ZeKelB_K2G4Vev4QwnOGXbF__rgT_H7bPOktkM21nsdbJyzaiRrkHEo4Nk_4CbOKZS_KQrIWo6CFehiD5kUc07W3QVBULtm1K4ZdWymOF7dz3_kD1XcC7hzHtdRVY4Qys3eT_bnVMCX_wOL_mKvb_IU0x3AmOSUUfYHHLuqeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201384153</pqid></control><display><type>article</type><title>An Agent-Based Approach for Modeling Molecular Self-Organization</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Troisi, Alessandro ; Wong, Vance ; Ratner, Mark A.</creator><creatorcontrib>Troisi, Alessandro ; Wong, Vance ; Ratner, Mark A.</creatorcontrib><description>Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the problem of packing rigid shapes on a lattice to verify that this algorithm produces more nearly optimal aggregates with less computational effort than comparable Monte Carlo simulations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0408308102</identifier><identifier>PMID: 15625108</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Behavior modeling ; Chemistry ; Computer based modeling ; Computer Simulation ; Crystal lattices ; Determinism ; Dimers ; Lead ; Metropolitan areas ; Modeling ; Models, Molecular ; Molecules ; Monte Carlo simulation ; Physical Sciences ; Self assembly ; Stochastic methods ; Stochastic Processes</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (2), p.255-260</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 11, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-4c3ccd27c9fa014be575b9041671f70f7f08c6161fcd3d9d0ae3d358a52a5ecd3</citedby><cites>FETCH-LOGICAL-c491t-4c3ccd27c9fa014be575b9041671f70f7f08c6161fcd3d9d0ae3d358a52a5ecd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/2.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3374232$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3374232$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15625108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Troisi, Alessandro</creatorcontrib><creatorcontrib>Wong, Vance</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><title>An Agent-Based Approach for Modeling Molecular Self-Organization</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the problem of packing rigid shapes on a lattice to verify that this algorithm produces more nearly optimal aggregates with less computational effort than comparable Monte Carlo simulations.</description><subject>Algorithms</subject><subject>Behavior modeling</subject><subject>Chemistry</subject><subject>Computer based modeling</subject><subject>Computer Simulation</subject><subject>Crystal lattices</subject><subject>Determinism</subject><subject>Dimers</subject><subject>Lead</subject><subject>Metropolitan areas</subject><subject>Modeling</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Monte Carlo simulation</subject><subject>Physical Sciences</subject><subject>Self assembly</subject><subject>Stochastic methods</subject><subject>Stochastic Processes</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EokNhzQZQ1AW7tPf6EScLJKYVL6moC2BteRx7mpHHDnaCgF-PRzPqFBbIC1v3fOfqWIeQ5wjnCJJdjEHnc-DQMmgR6AOyQOiwbngHD8kCgMq65ZSfkCc5bwCgEy08JicoGioQ2gV5uwzVcm3DVF_qbPtqOY4panNbuZiqz7G3fgjr8vDWzF6n6ov1rr5Jax2G33oaYnhKHjnts312uE_Jt_fvvl59rK9vPny6Wl7Xhnc41dwwY3oqTec0IF9ZIcWqA46NRCfBSQetabBBZ3rWdz1oy3omWi2oFrbMTsmb_d5xXm1tb0rkpL0a07DV6ZeKelB_K2G4Vev4QwnOGXbF__rgT_H7bPOktkM21nsdbJyzaiRrkHEo4Nk_4CbOKZS_KQrIWo6CFehiD5kUc07W3QVBULtm1K4ZdWymOF7dz3_kD1XcC7hzHtdRVY4Qys3eT_bnVMCX_wOL_mKvb_IU0x3AmOSUUfYHHLuqeQ</recordid><startdate>20050111</startdate><enddate>20050111</enddate><creator>Troisi, Alessandro</creator><creator>Wong, Vance</creator><creator>Ratner, Mark A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050111</creationdate><title>An Agent-Based Approach for Modeling Molecular Self-Organization</title><author>Troisi, Alessandro ; Wong, Vance ; Ratner, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-4c3ccd27c9fa014be575b9041671f70f7f08c6161fcd3d9d0ae3d358a52a5ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Behavior modeling</topic><topic>Chemistry</topic><topic>Computer based modeling</topic><topic>Computer Simulation</topic><topic>Crystal lattices</topic><topic>Determinism</topic><topic>Dimers</topic><topic>Lead</topic><topic>Metropolitan areas</topic><topic>Modeling</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Monte Carlo simulation</topic><topic>Physical Sciences</topic><topic>Self assembly</topic><topic>Stochastic methods</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troisi, Alessandro</creatorcontrib><creatorcontrib>Wong, Vance</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troisi, Alessandro</au><au>Wong, Vance</au><au>Ratner, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Agent-Based Approach for Modeling Molecular Self-Organization</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-01-11</date><risdate>2005</risdate><volume>102</volume><issue>2</issue><spage>255</spage><epage>260</epage><pages>255-260</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the problem of packing rigid shapes on a lattice to verify that this algorithm produces more nearly optimal aggregates with less computational effort than comparable Monte Carlo simulations.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15625108</pmid><doi>10.1073/pnas.0408308102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-01, Vol.102 (2), p.255-260
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_544319
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Behavior modeling
Chemistry
Computer based modeling
Computer Simulation
Crystal lattices
Determinism
Dimers
Lead
Metropolitan areas
Modeling
Models, Molecular
Molecules
Monte Carlo simulation
Physical Sciences
Self assembly
Stochastic methods
Stochastic Processes
title An Agent-Based Approach for Modeling Molecular Self-Organization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Agent-Based%20Approach%20for%20Modeling%20Molecular%20Self-Organization&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Troisi,%20Alessandro&rft.date=2005-01-11&rft.volume=102&rft.issue=2&rft.spage=255&rft.epage=260&rft.pages=255-260&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0408308102&rft_dat=%3Cjstor_pubme%3E3374232%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201384153&rft_id=info:pmid/15625108&rft_jstor_id=3374232&rfr_iscdi=true