Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis

Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncology reports 2017-06, Vol.37 (6), p.3219-3226
Hauptverfasser: Xu, Weifeng, Wu, Bing, Fu, Lengxi, Chen, Junying, Wang, Zeng, Huang, Fei, Chen, Jinrong, Zhang, Mei, Zhang, Zhenhuan, Lin, Jingan, Lan, Ruilong, Chen, Ruiqing, Chen, Wei, Chen, Long, Hong, Jinsheng, Zhang, Weijian, Ding, Yuxiong, Okunieff, Paul, Lin, Jianhua, Zhang, Lurong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3226
container_issue 6
container_start_page 3219
container_title Oncology reports
container_volume 37
creator Xu, Weifeng
Wu, Bing
Fu, Lengxi
Chen, Junying
Wang, Zeng
Huang, Fei
Chen, Jinrong
Zhang, Mei
Zhang, Zhenhuan
Lin, Jingan
Lan, Ruilong
Chen, Ruiqing
Chen, Wei
Chen, Long
Hong, Jinsheng
Zhang, Weijian
Ding, Yuxiong
Okunieff, Paul
Lin, Jianhua
Zhang, Lurong
description Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs.
doi_str_mv 10.3892/or.2017.5613
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5442393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497178951</galeid><sourcerecordid>A497178951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-d28284e684678a7922485d65d45c62ddc6fb8fea2a582a08f8c978b1728cd05e3</originalsourceid><addsrcrecordid>eNptkt-L1DAQx4so3nn65rMEBPHBrkmatMnLwbH4Cw58UfAtZNPJNkfbrEmq-N87Zc_zViSBhHw_801mMlX1nNFNozR_G9OGU9ZtZMuaB9U56zSruWjYQ9xTzuqmkd_Oqic531DKO9rqx9UZV0Irodh5FbdxOtgUcpxJ9KQMCYD0wXtIMBcyQRlin4mPCTVUoIAr4Qi7kNwy2hLmPSnLhIiDccwkzGQKDsjPUAYyLqiijc04Q35aPfJ2zPDsdr2ovr5_92X7sb7-_OHT9uq6dpLRUvdc4RuhVaLtlO0050LJvpW9kK7lfe9av1MeLLdScUuVV053asc6rlxPJTQX1eXR97DsJugdJpPsaA4pTDb9MtEGc6rMYTD7-MNIIXijGzR4fWuQ4vcFcjFTyGt-doa4ZMOU1owiKBB9-Q96E5c0Y3qGaY2VloLpv9TejmDC7CPe61ZTcyV0xzqlJUNq8x8KRw9Y0ziDD3h-EvDqXsAAdixDjuOyflI-Bd8cQZdizgn8XTEYNWsnmZjM2klm7STEX9wv4B38p3Wa33Kew7k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994985419</pqid></control><display><type>article</type><title>Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Weifeng ; Wu, Bing ; Fu, Lengxi ; Chen, Junying ; Wang, Zeng ; Huang, Fei ; Chen, Jinrong ; Zhang, Mei ; Zhang, Zhenhuan ; Lin, Jingan ; Lan, Ruilong ; Chen, Ruiqing ; Chen, Wei ; Chen, Long ; Hong, Jinsheng ; Zhang, Weijian ; Ding, Yuxiong ; Okunieff, Paul ; Lin, Jianhua ; Zhang, Lurong</creator><creatorcontrib>Xu, Weifeng ; Wu, Bing ; Fu, Lengxi ; Chen, Junying ; Wang, Zeng ; Huang, Fei ; Chen, Jinrong ; Zhang, Mei ; Zhang, Zhenhuan ; Lin, Jingan ; Lan, Ruilong ; Chen, Ruiqing ; Chen, Wei ; Chen, Long ; Hong, Jinsheng ; Zhang, Weijian ; Ding, Yuxiong ; Okunieff, Paul ; Lin, Jianhua ; Zhang, Lurong</creatorcontrib><description>Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs.</description><identifier>ISSN: 1021-335X</identifier><identifier>EISSN: 1791-2431</identifier><identifier>DOI: 10.3892/or.2017.5613</identifier><identifier>PMID: 28498481</identifier><language>eng</language><publisher>Greece: Spandidos Publications</publisher><subject>Animals ; Bioluminescence ; Blood ; Breast cancer ; Breast Neoplasms - blood ; Breast Neoplasms - pathology ; Cancer cells ; Cancer therapies ; Cell Line, Tumor ; Cell Separation - methods ; Diagnosis ; Disease Models, Animal ; Female ; Humans ; Lung cancer ; Lung Neoplasms - blood ; Lung Neoplasms - pathology ; Lung Neoplasms - secondary ; Metastasis ; Methods ; Mice ; Neoplastic Cells, Circulating - metabolism ; Neoplastic Cells, Circulating - pathology ; Prognosis ; Researchers ; Studies</subject><ispartof>Oncology reports, 2017-06, Vol.37 (6), p.3219-3226</ispartof><rights>COPYRIGHT 2017 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2017</rights><rights>Copyright: © Xu et al. 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-d28284e684678a7922485d65d45c62ddc6fb8fea2a582a08f8c978b1728cd05e3</citedby><cites>FETCH-LOGICAL-c510t-d28284e684678a7922485d65d45c62ddc6fb8fea2a582a08f8c978b1728cd05e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28498481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Weifeng</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Fu, Lengxi</creatorcontrib><creatorcontrib>Chen, Junying</creatorcontrib><creatorcontrib>Wang, Zeng</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Chen, Jinrong</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Zhang, Zhenhuan</creatorcontrib><creatorcontrib>Lin, Jingan</creatorcontrib><creatorcontrib>Lan, Ruilong</creatorcontrib><creatorcontrib>Chen, Ruiqing</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Hong, Jinsheng</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Ding, Yuxiong</creatorcontrib><creatorcontrib>Okunieff, Paul</creatorcontrib><creatorcontrib>Lin, Jianhua</creatorcontrib><creatorcontrib>Zhang, Lurong</creatorcontrib><title>Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis</title><title>Oncology reports</title><addtitle>Oncol Rep</addtitle><description>Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs.</description><subject>Animals</subject><subject>Bioluminescence</subject><subject>Blood</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - blood</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer cells</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>Cell Separation - methods</subject><subject>Diagnosis</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - blood</subject><subject>Lung Neoplasms - pathology</subject><subject>Lung Neoplasms - secondary</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Mice</subject><subject>Neoplastic Cells, Circulating - metabolism</subject><subject>Neoplastic Cells, Circulating - pathology</subject><subject>Prognosis</subject><subject>Researchers</subject><subject>Studies</subject><issn>1021-335X</issn><issn>1791-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkt-L1DAQx4so3nn65rMEBPHBrkmatMnLwbH4Cw58UfAtZNPJNkfbrEmq-N87Zc_zViSBhHw_801mMlX1nNFNozR_G9OGU9ZtZMuaB9U56zSruWjYQ9xTzuqmkd_Oqic531DKO9rqx9UZV0Irodh5FbdxOtgUcpxJ9KQMCYD0wXtIMBcyQRlin4mPCTVUoIAr4Qi7kNwy2hLmPSnLhIiDccwkzGQKDsjPUAYyLqiijc04Q35aPfJ2zPDsdr2ovr5_92X7sb7-_OHT9uq6dpLRUvdc4RuhVaLtlO0050LJvpW9kK7lfe9av1MeLLdScUuVV053asc6rlxPJTQX1eXR97DsJugdJpPsaA4pTDb9MtEGc6rMYTD7-MNIIXijGzR4fWuQ4vcFcjFTyGt-doa4ZMOU1owiKBB9-Q96E5c0Y3qGaY2VloLpv9TejmDC7CPe61ZTcyV0xzqlJUNq8x8KRw9Y0ziDD3h-EvDqXsAAdixDjuOyflI-Bd8cQZdizgn8XTEYNWsnmZjM2klm7STEX9wv4B38p3Wa33Kew7k</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Xu, Weifeng</creator><creator>Wu, Bing</creator><creator>Fu, Lengxi</creator><creator>Chen, Junying</creator><creator>Wang, Zeng</creator><creator>Huang, Fei</creator><creator>Chen, Jinrong</creator><creator>Zhang, Mei</creator><creator>Zhang, Zhenhuan</creator><creator>Lin, Jingan</creator><creator>Lan, Ruilong</creator><creator>Chen, Ruiqing</creator><creator>Chen, Wei</creator><creator>Chen, Long</creator><creator>Hong, Jinsheng</creator><creator>Zhang, Weijian</creator><creator>Ding, Yuxiong</creator><creator>Okunieff, Paul</creator><creator>Lin, Jianhua</creator><creator>Zhang, Lurong</creator><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170601</creationdate><title>Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis</title><author>Xu, Weifeng ; Wu, Bing ; Fu, Lengxi ; Chen, Junying ; Wang, Zeng ; Huang, Fei ; Chen, Jinrong ; Zhang, Mei ; Zhang, Zhenhuan ; Lin, Jingan ; Lan, Ruilong ; Chen, Ruiqing ; Chen, Wei ; Chen, Long ; Hong, Jinsheng ; Zhang, Weijian ; Ding, Yuxiong ; Okunieff, Paul ; Lin, Jianhua ; Zhang, Lurong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-d28284e684678a7922485d65d45c62ddc6fb8fea2a582a08f8c978b1728cd05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Bioluminescence</topic><topic>Blood</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - blood</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer cells</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>Cell Separation - methods</topic><topic>Diagnosis</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - blood</topic><topic>Lung Neoplasms - pathology</topic><topic>Lung Neoplasms - secondary</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Mice</topic><topic>Neoplastic Cells, Circulating - metabolism</topic><topic>Neoplastic Cells, Circulating - pathology</topic><topic>Prognosis</topic><topic>Researchers</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weifeng</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Fu, Lengxi</creatorcontrib><creatorcontrib>Chen, Junying</creatorcontrib><creatorcontrib>Wang, Zeng</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Chen, Jinrong</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Zhang, Zhenhuan</creatorcontrib><creatorcontrib>Lin, Jingan</creatorcontrib><creatorcontrib>Lan, Ruilong</creatorcontrib><creatorcontrib>Chen, Ruiqing</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Hong, Jinsheng</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Ding, Yuxiong</creatorcontrib><creatorcontrib>Okunieff, Paul</creatorcontrib><creatorcontrib>Lin, Jianhua</creatorcontrib><creatorcontrib>Zhang, Lurong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weifeng</au><au>Wu, Bing</au><au>Fu, Lengxi</au><au>Chen, Junying</au><au>Wang, Zeng</au><au>Huang, Fei</au><au>Chen, Jinrong</au><au>Zhang, Mei</au><au>Zhang, Zhenhuan</au><au>Lin, Jingan</au><au>Lan, Ruilong</au><au>Chen, Ruiqing</au><au>Chen, Wei</au><au>Chen, Long</au><au>Hong, Jinsheng</au><au>Zhang, Weijian</au><au>Ding, Yuxiong</au><au>Okunieff, Paul</au><au>Lin, Jianhua</au><au>Zhang, Lurong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis</atitle><jtitle>Oncology reports</jtitle><addtitle>Oncol Rep</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>37</volume><issue>6</issue><spage>3219</spage><epage>3226</epage><pages>3219-3226</pages><issn>1021-335X</issn><eissn>1791-2431</eissn><abstract>Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs.</abstract><cop>Greece</cop><pub>Spandidos Publications</pub><pmid>28498481</pmid><doi>10.3892/or.2017.5613</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1021-335X
ispartof Oncology reports, 2017-06, Vol.37 (6), p.3219-3226
issn 1021-335X
1791-2431
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5442393
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Bioluminescence
Blood
Breast cancer
Breast Neoplasms - blood
Breast Neoplasms - pathology
Cancer cells
Cancer therapies
Cell Line, Tumor
Cell Separation - methods
Diagnosis
Disease Models, Animal
Female
Humans
Lung cancer
Lung Neoplasms - blood
Lung Neoplasms - pathology
Lung Neoplasms - secondary
Metastasis
Methods
Mice
Neoplastic Cells, Circulating - metabolism
Neoplastic Cells, Circulating - pathology
Prognosis
Researchers
Studies
title Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20three%20different%20methods%20for%20the%20detection%20of%20circulating%20tumor%20cells%20in%20mice%20with%20lung%20metastasis&rft.jtitle=Oncology%20reports&rft.au=Xu,%20Weifeng&rft.date=2017-06-01&rft.volume=37&rft.issue=6&rft.spage=3219&rft.epage=3226&rft.pages=3219-3226&rft.issn=1021-335X&rft.eissn=1791-2431&rft_id=info:doi/10.3892/or.2017.5613&rft_dat=%3Cgale_pubme%3EA497178951%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994985419&rft_id=info:pmid/28498481&rft_galeid=A497178951&rfr_iscdi=true