Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis
Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, inc...
Gespeichert in:
Veröffentlicht in: | Oncology reports 2017-06, Vol.37 (6), p.3219-3226 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3226 |
---|---|
container_issue | 6 |
container_start_page | 3219 |
container_title | Oncology reports |
container_volume | 37 |
creator | Xu, Weifeng Wu, Bing Fu, Lengxi Chen, Junying Wang, Zeng Huang, Fei Chen, Jinrong Zhang, Mei Zhang, Zhenhuan Lin, Jingan Lan, Ruilong Chen, Ruiqing Chen, Wei Chen, Long Hong, Jinsheng Zhang, Weijian Ding, Yuxiong Okunieff, Paul Lin, Jianhua Zhang, Lurong |
description | Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs. |
doi_str_mv | 10.3892/or.2017.5613 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5442393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A497178951</galeid><sourcerecordid>A497178951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-d28284e684678a7922485d65d45c62ddc6fb8fea2a582a08f8c978b1728cd05e3</originalsourceid><addsrcrecordid>eNptkt-L1DAQx4so3nn65rMEBPHBrkmatMnLwbH4Cw58UfAtZNPJNkfbrEmq-N87Zc_zViSBhHw_801mMlX1nNFNozR_G9OGU9ZtZMuaB9U56zSruWjYQ9xTzuqmkd_Oqic531DKO9rqx9UZV0Irodh5FbdxOtgUcpxJ9KQMCYD0wXtIMBcyQRlin4mPCTVUoIAr4Qi7kNwy2hLmPSnLhIiDccwkzGQKDsjPUAYyLqiijc04Q35aPfJ2zPDsdr2ovr5_92X7sb7-_OHT9uq6dpLRUvdc4RuhVaLtlO0050LJvpW9kK7lfe9av1MeLLdScUuVV053asc6rlxPJTQX1eXR97DsJugdJpPsaA4pTDb9MtEGc6rMYTD7-MNIIXijGzR4fWuQ4vcFcjFTyGt-doa4ZMOU1owiKBB9-Q96E5c0Y3qGaY2VloLpv9TejmDC7CPe61ZTcyV0xzqlJUNq8x8KRw9Y0ziDD3h-EvDqXsAAdixDjuOyflI-Bd8cQZdizgn8XTEYNWsnmZjM2klm7STEX9wv4B38p3Wa33Kew7k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994985419</pqid></control><display><type>article</type><title>Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Weifeng ; Wu, Bing ; Fu, Lengxi ; Chen, Junying ; Wang, Zeng ; Huang, Fei ; Chen, Jinrong ; Zhang, Mei ; Zhang, Zhenhuan ; Lin, Jingan ; Lan, Ruilong ; Chen, Ruiqing ; Chen, Wei ; Chen, Long ; Hong, Jinsheng ; Zhang, Weijian ; Ding, Yuxiong ; Okunieff, Paul ; Lin, Jianhua ; Zhang, Lurong</creator><creatorcontrib>Xu, Weifeng ; Wu, Bing ; Fu, Lengxi ; Chen, Junying ; Wang, Zeng ; Huang, Fei ; Chen, Jinrong ; Zhang, Mei ; Zhang, Zhenhuan ; Lin, Jingan ; Lan, Ruilong ; Chen, Ruiqing ; Chen, Wei ; Chen, Long ; Hong, Jinsheng ; Zhang, Weijian ; Ding, Yuxiong ; Okunieff, Paul ; Lin, Jianhua ; Zhang, Lurong</creatorcontrib><description>Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs.</description><identifier>ISSN: 1021-335X</identifier><identifier>EISSN: 1791-2431</identifier><identifier>DOI: 10.3892/or.2017.5613</identifier><identifier>PMID: 28498481</identifier><language>eng</language><publisher>Greece: Spandidos Publications</publisher><subject>Animals ; Bioluminescence ; Blood ; Breast cancer ; Breast Neoplasms - blood ; Breast Neoplasms - pathology ; Cancer cells ; Cancer therapies ; Cell Line, Tumor ; Cell Separation - methods ; Diagnosis ; Disease Models, Animal ; Female ; Humans ; Lung cancer ; Lung Neoplasms - blood ; Lung Neoplasms - pathology ; Lung Neoplasms - secondary ; Metastasis ; Methods ; Mice ; Neoplastic Cells, Circulating - metabolism ; Neoplastic Cells, Circulating - pathology ; Prognosis ; Researchers ; Studies</subject><ispartof>Oncology reports, 2017-06, Vol.37 (6), p.3219-3226</ispartof><rights>COPYRIGHT 2017 Spandidos Publications</rights><rights>Copyright Spandidos Publications UK Ltd. 2017</rights><rights>Copyright: © Xu et al. 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-d28284e684678a7922485d65d45c62ddc6fb8fea2a582a08f8c978b1728cd05e3</citedby><cites>FETCH-LOGICAL-c510t-d28284e684678a7922485d65d45c62ddc6fb8fea2a582a08f8c978b1728cd05e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28498481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Weifeng</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Fu, Lengxi</creatorcontrib><creatorcontrib>Chen, Junying</creatorcontrib><creatorcontrib>Wang, Zeng</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Chen, Jinrong</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Zhang, Zhenhuan</creatorcontrib><creatorcontrib>Lin, Jingan</creatorcontrib><creatorcontrib>Lan, Ruilong</creatorcontrib><creatorcontrib>Chen, Ruiqing</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Hong, Jinsheng</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Ding, Yuxiong</creatorcontrib><creatorcontrib>Okunieff, Paul</creatorcontrib><creatorcontrib>Lin, Jianhua</creatorcontrib><creatorcontrib>Zhang, Lurong</creatorcontrib><title>Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis</title><title>Oncology reports</title><addtitle>Oncol Rep</addtitle><description>Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs.</description><subject>Animals</subject><subject>Bioluminescence</subject><subject>Blood</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - blood</subject><subject>Breast Neoplasms - pathology</subject><subject>Cancer cells</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>Cell Separation - methods</subject><subject>Diagnosis</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - blood</subject><subject>Lung Neoplasms - pathology</subject><subject>Lung Neoplasms - secondary</subject><subject>Metastasis</subject><subject>Methods</subject><subject>Mice</subject><subject>Neoplastic Cells, Circulating - metabolism</subject><subject>Neoplastic Cells, Circulating - pathology</subject><subject>Prognosis</subject><subject>Researchers</subject><subject>Studies</subject><issn>1021-335X</issn><issn>1791-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkt-L1DAQx4so3nn65rMEBPHBrkmatMnLwbH4Cw58UfAtZNPJNkfbrEmq-N87Zc_zViSBhHw_801mMlX1nNFNozR_G9OGU9ZtZMuaB9U56zSruWjYQ9xTzuqmkd_Oqic531DKO9rqx9UZV0Irodh5FbdxOtgUcpxJ9KQMCYD0wXtIMBcyQRlin4mPCTVUoIAr4Qi7kNwy2hLmPSnLhIiDccwkzGQKDsjPUAYyLqiijc04Q35aPfJ2zPDsdr2ovr5_92X7sb7-_OHT9uq6dpLRUvdc4RuhVaLtlO0050LJvpW9kK7lfe9av1MeLLdScUuVV053asc6rlxPJTQX1eXR97DsJugdJpPsaA4pTDb9MtEGc6rMYTD7-MNIIXijGzR4fWuQ4vcFcjFTyGt-doa4ZMOU1owiKBB9-Q96E5c0Y3qGaY2VloLpv9TejmDC7CPe61ZTcyV0xzqlJUNq8x8KRw9Y0ziDD3h-EvDqXsAAdixDjuOyflI-Bd8cQZdizgn8XTEYNWsnmZjM2klm7STEX9wv4B38p3Wa33Kew7k</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Xu, Weifeng</creator><creator>Wu, Bing</creator><creator>Fu, Lengxi</creator><creator>Chen, Junying</creator><creator>Wang, Zeng</creator><creator>Huang, Fei</creator><creator>Chen, Jinrong</creator><creator>Zhang, Mei</creator><creator>Zhang, Zhenhuan</creator><creator>Lin, Jingan</creator><creator>Lan, Ruilong</creator><creator>Chen, Ruiqing</creator><creator>Chen, Wei</creator><creator>Chen, Long</creator><creator>Hong, Jinsheng</creator><creator>Zhang, Weijian</creator><creator>Ding, Yuxiong</creator><creator>Okunieff, Paul</creator><creator>Lin, Jianhua</creator><creator>Zhang, Lurong</creator><general>Spandidos Publications</general><general>Spandidos Publications UK Ltd</general><general>D.A. Spandidos</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170601</creationdate><title>Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis</title><author>Xu, Weifeng ; Wu, Bing ; Fu, Lengxi ; Chen, Junying ; Wang, Zeng ; Huang, Fei ; Chen, Jinrong ; Zhang, Mei ; Zhang, Zhenhuan ; Lin, Jingan ; Lan, Ruilong ; Chen, Ruiqing ; Chen, Wei ; Chen, Long ; Hong, Jinsheng ; Zhang, Weijian ; Ding, Yuxiong ; Okunieff, Paul ; Lin, Jianhua ; Zhang, Lurong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-d28284e684678a7922485d65d45c62ddc6fb8fea2a582a08f8c978b1728cd05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Bioluminescence</topic><topic>Blood</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - blood</topic><topic>Breast Neoplasms - pathology</topic><topic>Cancer cells</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>Cell Separation - methods</topic><topic>Diagnosis</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - blood</topic><topic>Lung Neoplasms - pathology</topic><topic>Lung Neoplasms - secondary</topic><topic>Metastasis</topic><topic>Methods</topic><topic>Mice</topic><topic>Neoplastic Cells, Circulating - metabolism</topic><topic>Neoplastic Cells, Circulating - pathology</topic><topic>Prognosis</topic><topic>Researchers</topic><topic>Studies</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Weifeng</creatorcontrib><creatorcontrib>Wu, Bing</creatorcontrib><creatorcontrib>Fu, Lengxi</creatorcontrib><creatorcontrib>Chen, Junying</creatorcontrib><creatorcontrib>Wang, Zeng</creatorcontrib><creatorcontrib>Huang, Fei</creatorcontrib><creatorcontrib>Chen, Jinrong</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Zhang, Zhenhuan</creatorcontrib><creatorcontrib>Lin, Jingan</creatorcontrib><creatorcontrib>Lan, Ruilong</creatorcontrib><creatorcontrib>Chen, Ruiqing</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Hong, Jinsheng</creatorcontrib><creatorcontrib>Zhang, Weijian</creatorcontrib><creatorcontrib>Ding, Yuxiong</creatorcontrib><creatorcontrib>Okunieff, Paul</creatorcontrib><creatorcontrib>Lin, Jianhua</creatorcontrib><creatorcontrib>Zhang, Lurong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Weifeng</au><au>Wu, Bing</au><au>Fu, Lengxi</au><au>Chen, Junying</au><au>Wang, Zeng</au><au>Huang, Fei</au><au>Chen, Jinrong</au><au>Zhang, Mei</au><au>Zhang, Zhenhuan</au><au>Lin, Jingan</au><au>Lan, Ruilong</au><au>Chen, Ruiqing</au><au>Chen, Wei</au><au>Chen, Long</au><au>Hong, Jinsheng</au><au>Zhang, Weijian</au><au>Ding, Yuxiong</au><au>Okunieff, Paul</au><au>Lin, Jianhua</au><au>Zhang, Lurong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis</atitle><jtitle>Oncology reports</jtitle><addtitle>Oncol Rep</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>37</volume><issue>6</issue><spage>3219</spage><epage>3226</epage><pages>3219-3226</pages><issn>1021-335X</issn><eissn>1791-2431</eissn><abstract>Circulating tumor cells (CTCs) represent the key step of cancer cell dissemination. The alteration of CTCs correlates with the treatment outcome and prognosis. To enrich and identify CTCs from billions of blood cells renders a very challenging task, which triggers development of several methods, including lysis of RBC plus negative or positive enrichment using antibodies, and filter membrane or spiral microfluidics to capture CTCs. To compare the advantages of different enrichment methods for CTCs, we utilized the 4T1 breast cancer cells transfected with both green fluorescent protein (GFP) and luciferase to trace CTCs in the experimental lung metastasis model. Three methods were used to detect CTCs at the same time: bioluminescence assay, smearing method, and membrane filter method. The in vivo alive mouse imaging was used to dynamically monitor the growth of lung metastases. The sensitivity and accuracy of three detection methods were compared side-by-side. Our results showed that 1) the sensitivity of bioluminescence assay was the highest, but there was no information of CTC morphology; 2) the smearing method and membrane filter method could observe the detail of CTC morphology, such as in single or in cluster, while their sensitivity was lower than bioluminescence assay; 3) A dynamic observation at a 7-day intervals, the lung metastatic cancer grew at a log speed, while CTCs were increased at a low speed. This might be due to the activated immune cells eliminating the CTCs at a speed much faster than CTCs were generated. This comparison of three CTC detection methods in mouse model suggests that bioluminescence assay could be used in quantitative study of the effect of certain agent on the suppression of CTCs, while GFP-based morphological assays could be used to study the dissemination mechanism of CTCs. The combination of both bioluminescence assay and GFP-based assay would generate more information for quantity and quality of CTCs.</abstract><cop>Greece</cop><pub>Spandidos Publications</pub><pmid>28498481</pmid><doi>10.3892/or.2017.5613</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1021-335X |
ispartof | Oncology reports, 2017-06, Vol.37 (6), p.3219-3226 |
issn | 1021-335X 1791-2431 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5442393 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Bioluminescence Blood Breast cancer Breast Neoplasms - blood Breast Neoplasms - pathology Cancer cells Cancer therapies Cell Line, Tumor Cell Separation - methods Diagnosis Disease Models, Animal Female Humans Lung cancer Lung Neoplasms - blood Lung Neoplasms - pathology Lung Neoplasms - secondary Metastasis Methods Mice Neoplastic Cells, Circulating - metabolism Neoplastic Cells, Circulating - pathology Prognosis Researchers Studies |
title | Comparison of three different methods for the detection of circulating tumor cells in mice with lung metastasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20three%20different%20methods%20for%20the%20detection%20of%20circulating%20tumor%20cells%20in%20mice%20with%20lung%20metastasis&rft.jtitle=Oncology%20reports&rft.au=Xu,%20Weifeng&rft.date=2017-06-01&rft.volume=37&rft.issue=6&rft.spage=3219&rft.epage=3226&rft.pages=3219-3226&rft.issn=1021-335X&rft.eissn=1791-2431&rft_id=info:doi/10.3892/or.2017.5613&rft_dat=%3Cgale_pubme%3EA497178951%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994985419&rft_id=info:pmid/28498481&rft_galeid=A497178951&rfr_iscdi=true |