Spinal cord grey matter segmentation challenge
An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with a...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2017-05, Vol.152, p.312-329 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | |
container_start_page | 312 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 152 |
creator | Prados, Ferran Ashburner, John Blaiotta, Claudia Brosch, Tom Carballido-Gamio, Julio Cardoso, Manuel Jorge Conrad, Benjamin N. Datta, Esha Dávid, Gergely Leener, Benjamin De Dupont, Sara M. Freund, Patrick Wheeler-Kingshott, Claudia A.M. Gandini Grussu, Francesco Henry, Roland Landman, Bennett A. Ljungberg, Emil Lyttle, Bailey Ourselin, Sebastien Papinutto, Nico Saporito, Salvatore Schlaeger, Regina Smith, Seth A. Summers, Paul Tam, Roger Yiannakas, Marios C. Zhu, Alyssa Cohen-Adad, Julien |
description | An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication.
•First grey matter spinal cord segmentation challenge.•Six institutions participated in the challenge and compared their methods.•Public available dataset from multiple vendors and sites.•The challenge web site remains open to new submissions. |
doi_str_mv | 10.1016/j.neuroimage.2017.03.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5440179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917302185</els_id><sourcerecordid>1876819072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-74adbdff991ad591b3b8a0e684ab3140155049cdb327aeca409c6348427fc48d3</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhSMEoqXwCigSGzYJM7ET2xskqPiTKrFoWVuOPUl9lcQXO6nUt6-vbinQTVceyd-cOTOnKEqEGgG7D7t6oS0GP5uR6gZQ1MBqQHhWnCKotlKtaJ4f6pZVElGdFK9S2gGAQi5fFieNbGTHUJ4W9eXeL2YqbYiuHCPdlrNZV4plonGmZTWrD0tpr8000TLS6-LFYKZEb-7fs-LX1y9X59-ri5_ffpx_uqhsC2KtBDeud8OgFBrXKuxZLw1QJ7npGXLAtgWurOtZIwxZw0HZjnHJGzFYLh07Kz4edfdbP5Oz2Uk0k97HvHK81cF4_f_P4q_1GG50y7O6UFng_b1ADL83SquefbI0TWahsCWNUnQSFYgmo-8eobuwxXyUA6UkZqcCMiWPlI0hpUjDgxkEfQhF7_TfUPQhFA1M51By69t_l3lo_JNCBj4fAconvfEUdbKeFkvOR7KrdsE_PeUOI3mi_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898104970</pqid></control><display><type>article</type><title>Spinal cord grey matter segmentation challenge</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Prados, Ferran ; Ashburner, John ; Blaiotta, Claudia ; Brosch, Tom ; Carballido-Gamio, Julio ; Cardoso, Manuel Jorge ; Conrad, Benjamin N. ; Datta, Esha ; Dávid, Gergely ; Leener, Benjamin De ; Dupont, Sara M. ; Freund, Patrick ; Wheeler-Kingshott, Claudia A.M. Gandini ; Grussu, Francesco ; Henry, Roland ; Landman, Bennett A. ; Ljungberg, Emil ; Lyttle, Bailey ; Ourselin, Sebastien ; Papinutto, Nico ; Saporito, Salvatore ; Schlaeger, Regina ; Smith, Seth A. ; Summers, Paul ; Tam, Roger ; Yiannakas, Marios C. ; Zhu, Alyssa ; Cohen-Adad, Julien</creator><creatorcontrib>Prados, Ferran ; Ashburner, John ; Blaiotta, Claudia ; Brosch, Tom ; Carballido-Gamio, Julio ; Cardoso, Manuel Jorge ; Conrad, Benjamin N. ; Datta, Esha ; Dávid, Gergely ; Leener, Benjamin De ; Dupont, Sara M. ; Freund, Patrick ; Wheeler-Kingshott, Claudia A.M. Gandini ; Grussu, Francesco ; Henry, Roland ; Landman, Bennett A. ; Ljungberg, Emil ; Lyttle, Bailey ; Ourselin, Sebastien ; Papinutto, Nico ; Saporito, Salvatore ; Schlaeger, Regina ; Smith, Seth A. ; Summers, Paul ; Tam, Roger ; Yiannakas, Marios C. ; Zhu, Alyssa ; Cohen-Adad, Julien</creatorcontrib><description>An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication.
•First grey matter spinal cord segmentation challenge.•Six institutions participated in the challenge and compared their methods.•Public available dataset from multiple vendors and sites.•The challenge web site remains open to new submissions.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.03.010</identifier><identifier>PMID: 28286318</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Age ; Algorithms ; Atrophy ; Automation ; Bacon ; Brain ; Brain Mapping - methods ; Brain research ; Cervical Cord - anatomy & histology ; Challenge ; Computer vision ; Construction ; Data acquisition ; Data processing ; Datasets ; Edge detection ; Enlargement ; Evaluation metrics ; Feasibility studies ; Female ; Gray Matter - anatomy & histology ; Grey matter ; Head and neck ; High resolution ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; International conferences ; Intervertebral discs ; Magnetic Resonance Imaging ; Male ; Middle Aged ; MRI ; Multiple sclerosis ; Neck ; Neuroimaging ; Neurological diseases ; NMR ; Nuclear magnetic resonance ; Radio frequency ; Reproducibility of Results ; Resonance ; Scanners ; Scanning ; Sclerosis ; Segmentation ; Spatial discrimination ; Spinal cord ; Substantia alba ; Substantia grisea ; Sun ; Taxation ; Thinning ; University colleges ; White Matter - anatomy & histology</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-05, Vol.152, p.312-329</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 15, 2017</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-74adbdff991ad591b3b8a0e684ab3140155049cdb327aeca409c6348427fc48d3</citedby><cites>FETCH-LOGICAL-c507t-74adbdff991ad591b3b8a0e684ab3140155049cdb327aeca409c6348427fc48d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811917302185$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28286318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prados, Ferran</creatorcontrib><creatorcontrib>Ashburner, John</creatorcontrib><creatorcontrib>Blaiotta, Claudia</creatorcontrib><creatorcontrib>Brosch, Tom</creatorcontrib><creatorcontrib>Carballido-Gamio, Julio</creatorcontrib><creatorcontrib>Cardoso, Manuel Jorge</creatorcontrib><creatorcontrib>Conrad, Benjamin N.</creatorcontrib><creatorcontrib>Datta, Esha</creatorcontrib><creatorcontrib>Dávid, Gergely</creatorcontrib><creatorcontrib>Leener, Benjamin De</creatorcontrib><creatorcontrib>Dupont, Sara M.</creatorcontrib><creatorcontrib>Freund, Patrick</creatorcontrib><creatorcontrib>Wheeler-Kingshott, Claudia A.M. Gandini</creatorcontrib><creatorcontrib>Grussu, Francesco</creatorcontrib><creatorcontrib>Henry, Roland</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Ljungberg, Emil</creatorcontrib><creatorcontrib>Lyttle, Bailey</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Papinutto, Nico</creatorcontrib><creatorcontrib>Saporito, Salvatore</creatorcontrib><creatorcontrib>Schlaeger, Regina</creatorcontrib><creatorcontrib>Smith, Seth A.</creatorcontrib><creatorcontrib>Summers, Paul</creatorcontrib><creatorcontrib>Tam, Roger</creatorcontrib><creatorcontrib>Yiannakas, Marios C.</creatorcontrib><creatorcontrib>Zhu, Alyssa</creatorcontrib><creatorcontrib>Cohen-Adad, Julien</creatorcontrib><title>Spinal cord grey matter segmentation challenge</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication.
•First grey matter spinal cord segmentation challenge.•Six institutions participated in the challenge and compared their methods.•Public available dataset from multiple vendors and sites.•The challenge web site remains open to new submissions.</description><subject>Adult</subject><subject>Age</subject><subject>Algorithms</subject><subject>Atrophy</subject><subject>Automation</subject><subject>Bacon</subject><subject>Brain</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Cervical Cord - anatomy & histology</subject><subject>Challenge</subject><subject>Computer vision</subject><subject>Construction</subject><subject>Data acquisition</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Edge detection</subject><subject>Enlargement</subject><subject>Evaluation metrics</subject><subject>Feasibility studies</subject><subject>Female</subject><subject>Gray Matter - anatomy & histology</subject><subject>Grey matter</subject><subject>Head and neck</subject><subject>High resolution</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>International conferences</subject><subject>Intervertebral discs</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>MRI</subject><subject>Multiple sclerosis</subject><subject>Neck</subject><subject>Neuroimaging</subject><subject>Neurological diseases</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Radio frequency</subject><subject>Reproducibility of Results</subject><subject>Resonance</subject><subject>Scanners</subject><subject>Scanning</subject><subject>Sclerosis</subject><subject>Segmentation</subject><subject>Spatial discrimination</subject><subject>Spinal cord</subject><subject>Substantia alba</subject><subject>Substantia grisea</subject><subject>Sun</subject><subject>Taxation</subject><subject>Thinning</subject><subject>University colleges</subject><subject>White Matter - anatomy & histology</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc1u1TAQhSMEoqXwCigSGzYJM7ET2xskqPiTKrFoWVuOPUl9lcQXO6nUt6-vbinQTVceyd-cOTOnKEqEGgG7D7t6oS0GP5uR6gZQ1MBqQHhWnCKotlKtaJ4f6pZVElGdFK9S2gGAQi5fFieNbGTHUJ4W9eXeL2YqbYiuHCPdlrNZV4plonGmZTWrD0tpr8000TLS6-LFYKZEb-7fs-LX1y9X59-ri5_ffpx_uqhsC2KtBDeud8OgFBrXKuxZLw1QJ7npGXLAtgWurOtZIwxZw0HZjnHJGzFYLh07Kz4edfdbP5Oz2Uk0k97HvHK81cF4_f_P4q_1GG50y7O6UFng_b1ADL83SquefbI0TWahsCWNUnQSFYgmo-8eobuwxXyUA6UkZqcCMiWPlI0hpUjDgxkEfQhF7_TfUPQhFA1M51By69t_l3lo_JNCBj4fAconvfEUdbKeFkvOR7KrdsE_PeUOI3mi_w</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Prados, Ferran</creator><creator>Ashburner, John</creator><creator>Blaiotta, Claudia</creator><creator>Brosch, Tom</creator><creator>Carballido-Gamio, Julio</creator><creator>Cardoso, Manuel Jorge</creator><creator>Conrad, Benjamin N.</creator><creator>Datta, Esha</creator><creator>Dávid, Gergely</creator><creator>Leener, Benjamin De</creator><creator>Dupont, Sara M.</creator><creator>Freund, Patrick</creator><creator>Wheeler-Kingshott, Claudia A.M. Gandini</creator><creator>Grussu, Francesco</creator><creator>Henry, Roland</creator><creator>Landman, Bennett A.</creator><creator>Ljungberg, Emil</creator><creator>Lyttle, Bailey</creator><creator>Ourselin, Sebastien</creator><creator>Papinutto, Nico</creator><creator>Saporito, Salvatore</creator><creator>Schlaeger, Regina</creator><creator>Smith, Seth A.</creator><creator>Summers, Paul</creator><creator>Tam, Roger</creator><creator>Yiannakas, Marios C.</creator><creator>Zhu, Alyssa</creator><creator>Cohen-Adad, Julien</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170515</creationdate><title>Spinal cord grey matter segmentation challenge</title><author>Prados, Ferran ; Ashburner, John ; Blaiotta, Claudia ; Brosch, Tom ; Carballido-Gamio, Julio ; Cardoso, Manuel Jorge ; Conrad, Benjamin N. ; Datta, Esha ; Dávid, Gergely ; Leener, Benjamin De ; Dupont, Sara M. ; Freund, Patrick ; Wheeler-Kingshott, Claudia A.M. Gandini ; Grussu, Francesco ; Henry, Roland ; Landman, Bennett A. ; Ljungberg, Emil ; Lyttle, Bailey ; Ourselin, Sebastien ; Papinutto, Nico ; Saporito, Salvatore ; Schlaeger, Regina ; Smith, Seth A. ; Summers, Paul ; Tam, Roger ; Yiannakas, Marios C. ; Zhu, Alyssa ; Cohen-Adad, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-74adbdff991ad591b3b8a0e684ab3140155049cdb327aeca409c6348427fc48d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Age</topic><topic>Algorithms</topic><topic>Atrophy</topic><topic>Automation</topic><topic>Bacon</topic><topic>Brain</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Cervical Cord - anatomy & histology</topic><topic>Challenge</topic><topic>Computer vision</topic><topic>Construction</topic><topic>Data acquisition</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Edge detection</topic><topic>Enlargement</topic><topic>Evaluation metrics</topic><topic>Feasibility studies</topic><topic>Female</topic><topic>Gray Matter - anatomy & histology</topic><topic>Grey matter</topic><topic>Head and neck</topic><topic>High resolution</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>International conferences</topic><topic>Intervertebral discs</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>MRI</topic><topic>Multiple sclerosis</topic><topic>Neck</topic><topic>Neuroimaging</topic><topic>Neurological diseases</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Radio frequency</topic><topic>Reproducibility of Results</topic><topic>Resonance</topic><topic>Scanners</topic><topic>Scanning</topic><topic>Sclerosis</topic><topic>Segmentation</topic><topic>Spatial discrimination</topic><topic>Spinal cord</topic><topic>Substantia alba</topic><topic>Substantia grisea</topic><topic>Sun</topic><topic>Taxation</topic><topic>Thinning</topic><topic>University colleges</topic><topic>White Matter - anatomy & histology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prados, Ferran</creatorcontrib><creatorcontrib>Ashburner, John</creatorcontrib><creatorcontrib>Blaiotta, Claudia</creatorcontrib><creatorcontrib>Brosch, Tom</creatorcontrib><creatorcontrib>Carballido-Gamio, Julio</creatorcontrib><creatorcontrib>Cardoso, Manuel Jorge</creatorcontrib><creatorcontrib>Conrad, Benjamin N.</creatorcontrib><creatorcontrib>Datta, Esha</creatorcontrib><creatorcontrib>Dávid, Gergely</creatorcontrib><creatorcontrib>Leener, Benjamin De</creatorcontrib><creatorcontrib>Dupont, Sara M.</creatorcontrib><creatorcontrib>Freund, Patrick</creatorcontrib><creatorcontrib>Wheeler-Kingshott, Claudia A.M. Gandini</creatorcontrib><creatorcontrib>Grussu, Francesco</creatorcontrib><creatorcontrib>Henry, Roland</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Ljungberg, Emil</creatorcontrib><creatorcontrib>Lyttle, Bailey</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Papinutto, Nico</creatorcontrib><creatorcontrib>Saporito, Salvatore</creatorcontrib><creatorcontrib>Schlaeger, Regina</creatorcontrib><creatorcontrib>Smith, Seth A.</creatorcontrib><creatorcontrib>Summers, Paul</creatorcontrib><creatorcontrib>Tam, Roger</creatorcontrib><creatorcontrib>Yiannakas, Marios C.</creatorcontrib><creatorcontrib>Zhu, Alyssa</creatorcontrib><creatorcontrib>Cohen-Adad, Julien</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prados, Ferran</au><au>Ashburner, John</au><au>Blaiotta, Claudia</au><au>Brosch, Tom</au><au>Carballido-Gamio, Julio</au><au>Cardoso, Manuel Jorge</au><au>Conrad, Benjamin N.</au><au>Datta, Esha</au><au>Dávid, Gergely</au><au>Leener, Benjamin De</au><au>Dupont, Sara M.</au><au>Freund, Patrick</au><au>Wheeler-Kingshott, Claudia A.M. Gandini</au><au>Grussu, Francesco</au><au>Henry, Roland</au><au>Landman, Bennett A.</au><au>Ljungberg, Emil</au><au>Lyttle, Bailey</au><au>Ourselin, Sebastien</au><au>Papinutto, Nico</au><au>Saporito, Salvatore</au><au>Schlaeger, Regina</au><au>Smith, Seth A.</au><au>Summers, Paul</au><au>Tam, Roger</au><au>Yiannakas, Marios C.</au><au>Zhu, Alyssa</au><au>Cohen-Adad, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinal cord grey matter segmentation challenge</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-05-15</date><risdate>2017</risdate><volume>152</volume><spage>312</spage><epage>329</epage><pages>312-329</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication.
•First grey matter spinal cord segmentation challenge.•Six institutions participated in the challenge and compared their methods.•Public available dataset from multiple vendors and sites.•The challenge web site remains open to new submissions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28286318</pmid><doi>10.1016/j.neuroimage.2017.03.010</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2017-05, Vol.152, p.312-329 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5440179 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Age Algorithms Atrophy Automation Bacon Brain Brain Mapping - methods Brain research Cervical Cord - anatomy & histology Challenge Computer vision Construction Data acquisition Data processing Datasets Edge detection Enlargement Evaluation metrics Feasibility studies Female Gray Matter - anatomy & histology Grey matter Head and neck High resolution Humans Image processing Image Processing, Computer-Assisted - methods International conferences Intervertebral discs Magnetic Resonance Imaging Male Middle Aged MRI Multiple sclerosis Neck Neuroimaging Neurological diseases NMR Nuclear magnetic resonance Radio frequency Reproducibility of Results Resonance Scanners Scanning Sclerosis Segmentation Spatial discrimination Spinal cord Substantia alba Substantia grisea Sun Taxation Thinning University colleges White Matter - anatomy & histology |
title | Spinal cord grey matter segmentation challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinal%20cord%20grey%20matter%20segmentation%20challenge&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Prados,%20Ferran&rft.date=2017-05-15&rft.volume=152&rft.spage=312&rft.epage=329&rft.pages=312-329&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.03.010&rft_dat=%3Cproquest_pubme%3E1876819072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898104970&rft_id=info:pmid/28286318&rft_els_id=S1053811917302185&rfr_iscdi=true |