Spinal cord grey matter segmentation challenge

An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2017-05, Vol.152, p.312-329
Hauptverfasser: Prados, Ferran, Ashburner, John, Blaiotta, Claudia, Brosch, Tom, Carballido-Gamio, Julio, Cardoso, Manuel Jorge, Conrad, Benjamin N., Datta, Esha, Dávid, Gergely, Leener, Benjamin De, Dupont, Sara M., Freund, Patrick, Wheeler-Kingshott, Claudia A.M. Gandini, Grussu, Francesco, Henry, Roland, Landman, Bennett A., Ljungberg, Emil, Lyttle, Bailey, Ourselin, Sebastien, Papinutto, Nico, Saporito, Salvatore, Schlaeger, Regina, Smith, Seth A., Summers, Paul, Tam, Roger, Yiannakas, Marios C., Zhu, Alyssa, Cohen-Adad, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue
container_start_page 312
container_title NeuroImage (Orlando, Fla.)
container_volume 152
creator Prados, Ferran
Ashburner, John
Blaiotta, Claudia
Brosch, Tom
Carballido-Gamio, Julio
Cardoso, Manuel Jorge
Conrad, Benjamin N.
Datta, Esha
Dávid, Gergely
Leener, Benjamin De
Dupont, Sara M.
Freund, Patrick
Wheeler-Kingshott, Claudia A.M. Gandini
Grussu, Francesco
Henry, Roland
Landman, Bennett A.
Ljungberg, Emil
Lyttle, Bailey
Ourselin, Sebastien
Papinutto, Nico
Saporito, Salvatore
Schlaeger, Regina
Smith, Seth A.
Summers, Paul
Tam, Roger
Yiannakas, Marios C.
Zhu, Alyssa
Cohen-Adad, Julien
description An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. •First grey matter spinal cord segmentation challenge.•Six institutions participated in the challenge and compared their methods.•Public available dataset from multiple vendors and sites.•The challenge web site remains open to new submissions.
doi_str_mv 10.1016/j.neuroimage.2017.03.010
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5440179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917302185</els_id><sourcerecordid>1876819072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-74adbdff991ad591b3b8a0e684ab3140155049cdb327aeca409c6348427fc48d3</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhSMEoqXwCigSGzYJM7ET2xskqPiTKrFoWVuOPUl9lcQXO6nUt6-vbinQTVceyd-cOTOnKEqEGgG7D7t6oS0GP5uR6gZQ1MBqQHhWnCKotlKtaJ4f6pZVElGdFK9S2gGAQi5fFieNbGTHUJ4W9eXeL2YqbYiuHCPdlrNZV4plonGmZTWrD0tpr8000TLS6-LFYKZEb-7fs-LX1y9X59-ri5_ffpx_uqhsC2KtBDeud8OgFBrXKuxZLw1QJ7npGXLAtgWurOtZIwxZw0HZjnHJGzFYLh07Kz4edfdbP5Oz2Uk0k97HvHK81cF4_f_P4q_1GG50y7O6UFng_b1ADL83SquefbI0TWahsCWNUnQSFYgmo-8eobuwxXyUA6UkZqcCMiWPlI0hpUjDgxkEfQhF7_TfUPQhFA1M51By69t_l3lo_JNCBj4fAconvfEUdbKeFkvOR7KrdsE_PeUOI3mi_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898104970</pqid></control><display><type>article</type><title>Spinal cord grey matter segmentation challenge</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Prados, Ferran ; Ashburner, John ; Blaiotta, Claudia ; Brosch, Tom ; Carballido-Gamio, Julio ; Cardoso, Manuel Jorge ; Conrad, Benjamin N. ; Datta, Esha ; Dávid, Gergely ; Leener, Benjamin De ; Dupont, Sara M. ; Freund, Patrick ; Wheeler-Kingshott, Claudia A.M. Gandini ; Grussu, Francesco ; Henry, Roland ; Landman, Bennett A. ; Ljungberg, Emil ; Lyttle, Bailey ; Ourselin, Sebastien ; Papinutto, Nico ; Saporito, Salvatore ; Schlaeger, Regina ; Smith, Seth A. ; Summers, Paul ; Tam, Roger ; Yiannakas, Marios C. ; Zhu, Alyssa ; Cohen-Adad, Julien</creator><creatorcontrib>Prados, Ferran ; Ashburner, John ; Blaiotta, Claudia ; Brosch, Tom ; Carballido-Gamio, Julio ; Cardoso, Manuel Jorge ; Conrad, Benjamin N. ; Datta, Esha ; Dávid, Gergely ; Leener, Benjamin De ; Dupont, Sara M. ; Freund, Patrick ; Wheeler-Kingshott, Claudia A.M. Gandini ; Grussu, Francesco ; Henry, Roland ; Landman, Bennett A. ; Ljungberg, Emil ; Lyttle, Bailey ; Ourselin, Sebastien ; Papinutto, Nico ; Saporito, Salvatore ; Schlaeger, Regina ; Smith, Seth A. ; Summers, Paul ; Tam, Roger ; Yiannakas, Marios C. ; Zhu, Alyssa ; Cohen-Adad, Julien</creatorcontrib><description>An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. •First grey matter spinal cord segmentation challenge.•Six institutions participated in the challenge and compared their methods.•Public available dataset from multiple vendors and sites.•The challenge web site remains open to new submissions.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.03.010</identifier><identifier>PMID: 28286318</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Age ; Algorithms ; Atrophy ; Automation ; Bacon ; Brain ; Brain Mapping - methods ; Brain research ; Cervical Cord - anatomy &amp; histology ; Challenge ; Computer vision ; Construction ; Data acquisition ; Data processing ; Datasets ; Edge detection ; Enlargement ; Evaluation metrics ; Feasibility studies ; Female ; Gray Matter - anatomy &amp; histology ; Grey matter ; Head and neck ; High resolution ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; International conferences ; Intervertebral discs ; Magnetic Resonance Imaging ; Male ; Middle Aged ; MRI ; Multiple sclerosis ; Neck ; Neuroimaging ; Neurological diseases ; NMR ; Nuclear magnetic resonance ; Radio frequency ; Reproducibility of Results ; Resonance ; Scanners ; Scanning ; Sclerosis ; Segmentation ; Spatial discrimination ; Spinal cord ; Substantia alba ; Substantia grisea ; Sun ; Taxation ; Thinning ; University colleges ; White Matter - anatomy &amp; histology</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-05, Vol.152, p.312-329</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited May 15, 2017</rights><rights>2017 The Authors 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-74adbdff991ad591b3b8a0e684ab3140155049cdb327aeca409c6348427fc48d3</citedby><cites>FETCH-LOGICAL-c507t-74adbdff991ad591b3b8a0e684ab3140155049cdb327aeca409c6348427fc48d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1053811917302185$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28286318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prados, Ferran</creatorcontrib><creatorcontrib>Ashburner, John</creatorcontrib><creatorcontrib>Blaiotta, Claudia</creatorcontrib><creatorcontrib>Brosch, Tom</creatorcontrib><creatorcontrib>Carballido-Gamio, Julio</creatorcontrib><creatorcontrib>Cardoso, Manuel Jorge</creatorcontrib><creatorcontrib>Conrad, Benjamin N.</creatorcontrib><creatorcontrib>Datta, Esha</creatorcontrib><creatorcontrib>Dávid, Gergely</creatorcontrib><creatorcontrib>Leener, Benjamin De</creatorcontrib><creatorcontrib>Dupont, Sara M.</creatorcontrib><creatorcontrib>Freund, Patrick</creatorcontrib><creatorcontrib>Wheeler-Kingshott, Claudia A.M. Gandini</creatorcontrib><creatorcontrib>Grussu, Francesco</creatorcontrib><creatorcontrib>Henry, Roland</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Ljungberg, Emil</creatorcontrib><creatorcontrib>Lyttle, Bailey</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Papinutto, Nico</creatorcontrib><creatorcontrib>Saporito, Salvatore</creatorcontrib><creatorcontrib>Schlaeger, Regina</creatorcontrib><creatorcontrib>Smith, Seth A.</creatorcontrib><creatorcontrib>Summers, Paul</creatorcontrib><creatorcontrib>Tam, Roger</creatorcontrib><creatorcontrib>Yiannakas, Marios C.</creatorcontrib><creatorcontrib>Zhu, Alyssa</creatorcontrib><creatorcontrib>Cohen-Adad, Julien</creatorcontrib><title>Spinal cord grey matter segmentation challenge</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. •First grey matter spinal cord segmentation challenge.•Six institutions participated in the challenge and compared their methods.•Public available dataset from multiple vendors and sites.•The challenge web site remains open to new submissions.</description><subject>Adult</subject><subject>Age</subject><subject>Algorithms</subject><subject>Atrophy</subject><subject>Automation</subject><subject>Bacon</subject><subject>Brain</subject><subject>Brain Mapping - methods</subject><subject>Brain research</subject><subject>Cervical Cord - anatomy &amp; histology</subject><subject>Challenge</subject><subject>Computer vision</subject><subject>Construction</subject><subject>Data acquisition</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Edge detection</subject><subject>Enlargement</subject><subject>Evaluation metrics</subject><subject>Feasibility studies</subject><subject>Female</subject><subject>Gray Matter - anatomy &amp; histology</subject><subject>Grey matter</subject><subject>Head and neck</subject><subject>High resolution</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>International conferences</subject><subject>Intervertebral discs</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>MRI</subject><subject>Multiple sclerosis</subject><subject>Neck</subject><subject>Neuroimaging</subject><subject>Neurological diseases</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Radio frequency</subject><subject>Reproducibility of Results</subject><subject>Resonance</subject><subject>Scanners</subject><subject>Scanning</subject><subject>Sclerosis</subject><subject>Segmentation</subject><subject>Spatial discrimination</subject><subject>Spinal cord</subject><subject>Substantia alba</subject><subject>Substantia grisea</subject><subject>Sun</subject><subject>Taxation</subject><subject>Thinning</subject><subject>University colleges</subject><subject>White Matter - anatomy &amp; histology</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkc1u1TAQhSMEoqXwCigSGzYJM7ET2xskqPiTKrFoWVuOPUl9lcQXO6nUt6-vbinQTVceyd-cOTOnKEqEGgG7D7t6oS0GP5uR6gZQ1MBqQHhWnCKotlKtaJ4f6pZVElGdFK9S2gGAQi5fFieNbGTHUJ4W9eXeL2YqbYiuHCPdlrNZV4plonGmZTWrD0tpr8000TLS6-LFYKZEb-7fs-LX1y9X59-ri5_ffpx_uqhsC2KtBDeud8OgFBrXKuxZLw1QJ7npGXLAtgWurOtZIwxZw0HZjnHJGzFYLh07Kz4edfdbP5Oz2Uk0k97HvHK81cF4_f_P4q_1GG50y7O6UFng_b1ADL83SquefbI0TWahsCWNUnQSFYgmo-8eobuwxXyUA6UkZqcCMiWPlI0hpUjDgxkEfQhF7_TfUPQhFA1M51By69t_l3lo_JNCBj4fAconvfEUdbKeFkvOR7KrdsE_PeUOI3mi_w</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Prados, Ferran</creator><creator>Ashburner, John</creator><creator>Blaiotta, Claudia</creator><creator>Brosch, Tom</creator><creator>Carballido-Gamio, Julio</creator><creator>Cardoso, Manuel Jorge</creator><creator>Conrad, Benjamin N.</creator><creator>Datta, Esha</creator><creator>Dávid, Gergely</creator><creator>Leener, Benjamin De</creator><creator>Dupont, Sara M.</creator><creator>Freund, Patrick</creator><creator>Wheeler-Kingshott, Claudia A.M. Gandini</creator><creator>Grussu, Francesco</creator><creator>Henry, Roland</creator><creator>Landman, Bennett A.</creator><creator>Ljungberg, Emil</creator><creator>Lyttle, Bailey</creator><creator>Ourselin, Sebastien</creator><creator>Papinutto, Nico</creator><creator>Saporito, Salvatore</creator><creator>Schlaeger, Regina</creator><creator>Smith, Seth A.</creator><creator>Summers, Paul</creator><creator>Tam, Roger</creator><creator>Yiannakas, Marios C.</creator><creator>Zhu, Alyssa</creator><creator>Cohen-Adad, Julien</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>Academic Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170515</creationdate><title>Spinal cord grey matter segmentation challenge</title><author>Prados, Ferran ; Ashburner, John ; Blaiotta, Claudia ; Brosch, Tom ; Carballido-Gamio, Julio ; Cardoso, Manuel Jorge ; Conrad, Benjamin N. ; Datta, Esha ; Dávid, Gergely ; Leener, Benjamin De ; Dupont, Sara M. ; Freund, Patrick ; Wheeler-Kingshott, Claudia A.M. Gandini ; Grussu, Francesco ; Henry, Roland ; Landman, Bennett A. ; Ljungberg, Emil ; Lyttle, Bailey ; Ourselin, Sebastien ; Papinutto, Nico ; Saporito, Salvatore ; Schlaeger, Regina ; Smith, Seth A. ; Summers, Paul ; Tam, Roger ; Yiannakas, Marios C. ; Zhu, Alyssa ; Cohen-Adad, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-74adbdff991ad591b3b8a0e684ab3140155049cdb327aeca409c6348427fc48d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Age</topic><topic>Algorithms</topic><topic>Atrophy</topic><topic>Automation</topic><topic>Bacon</topic><topic>Brain</topic><topic>Brain Mapping - methods</topic><topic>Brain research</topic><topic>Cervical Cord - anatomy &amp; histology</topic><topic>Challenge</topic><topic>Computer vision</topic><topic>Construction</topic><topic>Data acquisition</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Edge detection</topic><topic>Enlargement</topic><topic>Evaluation metrics</topic><topic>Feasibility studies</topic><topic>Female</topic><topic>Gray Matter - anatomy &amp; histology</topic><topic>Grey matter</topic><topic>Head and neck</topic><topic>High resolution</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>International conferences</topic><topic>Intervertebral discs</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>MRI</topic><topic>Multiple sclerosis</topic><topic>Neck</topic><topic>Neuroimaging</topic><topic>Neurological diseases</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Radio frequency</topic><topic>Reproducibility of Results</topic><topic>Resonance</topic><topic>Scanners</topic><topic>Scanning</topic><topic>Sclerosis</topic><topic>Segmentation</topic><topic>Spatial discrimination</topic><topic>Spinal cord</topic><topic>Substantia alba</topic><topic>Substantia grisea</topic><topic>Sun</topic><topic>Taxation</topic><topic>Thinning</topic><topic>University colleges</topic><topic>White Matter - anatomy &amp; histology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prados, Ferran</creatorcontrib><creatorcontrib>Ashburner, John</creatorcontrib><creatorcontrib>Blaiotta, Claudia</creatorcontrib><creatorcontrib>Brosch, Tom</creatorcontrib><creatorcontrib>Carballido-Gamio, Julio</creatorcontrib><creatorcontrib>Cardoso, Manuel Jorge</creatorcontrib><creatorcontrib>Conrad, Benjamin N.</creatorcontrib><creatorcontrib>Datta, Esha</creatorcontrib><creatorcontrib>Dávid, Gergely</creatorcontrib><creatorcontrib>Leener, Benjamin De</creatorcontrib><creatorcontrib>Dupont, Sara M.</creatorcontrib><creatorcontrib>Freund, Patrick</creatorcontrib><creatorcontrib>Wheeler-Kingshott, Claudia A.M. Gandini</creatorcontrib><creatorcontrib>Grussu, Francesco</creatorcontrib><creatorcontrib>Henry, Roland</creatorcontrib><creatorcontrib>Landman, Bennett A.</creatorcontrib><creatorcontrib>Ljungberg, Emil</creatorcontrib><creatorcontrib>Lyttle, Bailey</creatorcontrib><creatorcontrib>Ourselin, Sebastien</creatorcontrib><creatorcontrib>Papinutto, Nico</creatorcontrib><creatorcontrib>Saporito, Salvatore</creatorcontrib><creatorcontrib>Schlaeger, Regina</creatorcontrib><creatorcontrib>Smith, Seth A.</creatorcontrib><creatorcontrib>Summers, Paul</creatorcontrib><creatorcontrib>Tam, Roger</creatorcontrib><creatorcontrib>Yiannakas, Marios C.</creatorcontrib><creatorcontrib>Zhu, Alyssa</creatorcontrib><creatorcontrib>Cohen-Adad, Julien</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prados, Ferran</au><au>Ashburner, John</au><au>Blaiotta, Claudia</au><au>Brosch, Tom</au><au>Carballido-Gamio, Julio</au><au>Cardoso, Manuel Jorge</au><au>Conrad, Benjamin N.</au><au>Datta, Esha</au><au>Dávid, Gergely</au><au>Leener, Benjamin De</au><au>Dupont, Sara M.</au><au>Freund, Patrick</au><au>Wheeler-Kingshott, Claudia A.M. Gandini</au><au>Grussu, Francesco</au><au>Henry, Roland</au><au>Landman, Bennett A.</au><au>Ljungberg, Emil</au><au>Lyttle, Bailey</au><au>Ourselin, Sebastien</au><au>Papinutto, Nico</au><au>Saporito, Salvatore</au><au>Schlaeger, Regina</au><au>Smith, Seth A.</au><au>Summers, Paul</au><au>Tam, Roger</au><au>Yiannakas, Marios C.</au><au>Zhu, Alyssa</au><au>Cohen-Adad, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinal cord grey matter segmentation challenge</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-05-15</date><risdate>2017</risdate><volume>152</volume><spage>312</spage><epage>329</epage><pages>312-329</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. •First grey matter spinal cord segmentation challenge.•Six institutions participated in the challenge and compared their methods.•Public available dataset from multiple vendors and sites.•The challenge web site remains open to new submissions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28286318</pmid><doi>10.1016/j.neuroimage.2017.03.010</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2017-05, Vol.152, p.312-329
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5440179
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Age
Algorithms
Atrophy
Automation
Bacon
Brain
Brain Mapping - methods
Brain research
Cervical Cord - anatomy & histology
Challenge
Computer vision
Construction
Data acquisition
Data processing
Datasets
Edge detection
Enlargement
Evaluation metrics
Feasibility studies
Female
Gray Matter - anatomy & histology
Grey matter
Head and neck
High resolution
Humans
Image processing
Image Processing, Computer-Assisted - methods
International conferences
Intervertebral discs
Magnetic Resonance Imaging
Male
Middle Aged
MRI
Multiple sclerosis
Neck
Neuroimaging
Neurological diseases
NMR
Nuclear magnetic resonance
Radio frequency
Reproducibility of Results
Resonance
Scanners
Scanning
Sclerosis
Segmentation
Spatial discrimination
Spinal cord
Substantia alba
Substantia grisea
Sun
Taxation
Thinning
University colleges
White Matter - anatomy & histology
title Spinal cord grey matter segmentation challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinal%20cord%20grey%20matter%20segmentation%20challenge&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Prados,%20Ferran&rft.date=2017-05-15&rft.volume=152&rft.spage=312&rft.epage=329&rft.pages=312-329&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.03.010&rft_dat=%3Cproquest_pubme%3E1876819072%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898104970&rft_id=info:pmid/28286318&rft_els_id=S1053811917302185&rfr_iscdi=true