Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats
Ketamine and deep brain stimulation produce rapid antidepressant effects in humans and rodents. An increased AMPA receptor (AMPA-R) signaling in medial prefrontal cortex (mPFC) has been suggested to mediate these responses. However, little research has addressed the direct effects of enhancing gluta...
Gespeichert in:
Veröffentlicht in: | Translational psychiatry 2017-02, Vol.7 (2), p.e1038-e1038 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1038 |
---|---|
container_issue | 2 |
container_start_page | e1038 |
container_title | Translational psychiatry |
container_volume | 7 |
creator | Gasull-Camós, J Tarrés-Gatius, M Artigas, F Castañé, A |
description | Ketamine and deep brain stimulation produce rapid antidepressant effects in humans and rodents. An increased AMPA receptor (AMPA-R) signaling in medial prefrontal cortex (mPFC) has been suggested to mediate these responses. However, little research has addressed the direct effects of enhancing glutamate tone or AMPA-R stimulation in mPFC subdivisions. The current study investigates the behavioral and neurochemical consequences of glutamate transporter-1 (GLT-1) blockade or s-AMPA microinfusion in the infralimbic (IL) and prelimbic (PrL) cortex. Owing to the connectivity between the mPFC and raphe nuclei, the role of serotonin is also explored. The bilateral microinfusion of the depolarizing agent veratridine into IL -but not PrL- of rats evoked immediate antidepressant-like responses. The same regional selectivity was observed after microinfusion of dihydrokainic acid (DHK), a selective inhibitor of GLT-1, present in astrocytes. The DHK-evoked antidepressant-like responses appear to be mediated by an AMPA-R-driven enhancement of serotonergic activity, as (i) they were prevented by NBQX 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt) and mimicked by s-AMPA; (ii) DHK and s-AMPA elevated similarly extracellular glutamate in IL and PrL, although extracellular 5-HT and
c-fos
expression in the midbrain dorsal raphe increased only when these agents were applied in IL; and (iii) DHK antidepressant-like responses were prevented by 5-HT synthesis inhibition and mimicked by citalopram microinfusion in IL. These results indicate that an acute increase of glutamatergic neurotransmission selectively in IL triggers immediate antidepressant-like responses in rats, likely mediated by the activation of IL–raphe pathways, which then results in a fast increase of serotonergic activity. |
doi_str_mv | 10.1038/tp.2017.7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321970289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-581029058a202afe75e04c6440a0a36a5bd4f43a78a2d5e28bd3f5fe55e337ac3</originalsourceid><addsrcrecordid>eNplkV9rFDEUxQdRbKl98AtIwBcVZs3fmeyLUIpuCwu-1OdwJ3Ozps1OxiRb7bc3y9ayagjkwvnl5ITTNK8ZXTAq9McyLzhl_aJ_1pxypnQrmNbPj-aT5jznW1qXkpr17GVzwjXnTHTqtImr4CGQ1fqmZWQI0d7BiMRPdbsEwW8Hb4mNqeAvApkAmfAnySVBwc0DKZHgfbxDkmD2I4Gp-BHnhDnXsQ2-Kugc2pL3lvVSftW8cBAynj-eZ823L59vLq_a9dfV9eXFurWKytIqzShfUqWBUw4Oe4VU2k5KChREB2oYpZMC-gqMCrkeRuGUQ6VQiB6sOGs-HXzn3bDF0eJUMwczJ7-F9GAiePO3MvnvZhPvjZJCU9FVg3ePBin-2GEuZuuzxRBgwrjLhumedpIqqir69h_0Nu7SVL9XqSWTSynEnnp_oGyKOSd0T2EYNfsmTZnNvknTV_bNcfon8k9vFfhwAHKVpg2moyf_c_sNJ3CniA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891494335</pqid></control><display><type>article</type><title>Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gasull-Camós, J ; Tarrés-Gatius, M ; Artigas, F ; Castañé, A</creator><creatorcontrib>Gasull-Camós, J ; Tarrés-Gatius, M ; Artigas, F ; Castañé, A</creatorcontrib><description>Ketamine and deep brain stimulation produce rapid antidepressant effects in humans and rodents. An increased AMPA receptor (AMPA-R) signaling in medial prefrontal cortex (mPFC) has been suggested to mediate these responses. However, little research has addressed the direct effects of enhancing glutamate tone or AMPA-R stimulation in mPFC subdivisions. The current study investigates the behavioral and neurochemical consequences of glutamate transporter-1 (GLT-1) blockade or s-AMPA microinfusion in the infralimbic (IL) and prelimbic (PrL) cortex. Owing to the connectivity between the mPFC and raphe nuclei, the role of serotonin is also explored. The bilateral microinfusion of the depolarizing agent veratridine into IL -but not PrL- of rats evoked immediate antidepressant-like responses. The same regional selectivity was observed after microinfusion of dihydrokainic acid (DHK), a selective inhibitor of GLT-1, present in astrocytes. The DHK-evoked antidepressant-like responses appear to be mediated by an AMPA-R-driven enhancement of serotonergic activity, as (i) they were prevented by NBQX 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt) and mimicked by s-AMPA; (ii) DHK and s-AMPA elevated similarly extracellular glutamate in IL and PrL, although extracellular 5-HT and
c-fos
expression in the midbrain dorsal raphe increased only when these agents were applied in IL; and (iii) DHK antidepressant-like responses were prevented by 5-HT synthesis inhibition and mimicked by citalopram microinfusion in IL. These results indicate that an acute increase of glutamatergic neurotransmission selectively in IL triggers immediate antidepressant-like responses in rats, likely mediated by the activation of IL–raphe pathways, which then results in a fast increase of serotonergic activity.</description><identifier>ISSN: 2158-3188</identifier><identifier>EISSN: 2158-3188</identifier><identifier>DOI: 10.1038/tp.2017.7</identifier><identifier>PMID: 28221365</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436 ; 631/378 ; 692/699/476/1414 ; Affect - drug effects ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology ; Animals ; Behavior, Animal - drug effects ; Behavioral Sciences ; Biological Psychology ; Citalopram - pharmacology ; Excitatory Amino Acid Agonists - pharmacology ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Amino Acid Transporter 2 - antagonists & inhibitors ; Glutamic Acid - drug effects ; Glutamic Acid - metabolism ; Kainic Acid - analogs & derivatives ; Kainic Acid - pharmacology ; Limbic Lobe - cytology ; Limbic Lobe - metabolism ; Male ; Medicine ; Medicine & Public Health ; Neuroglia - metabolism ; Neurosciences ; Original ; original-article ; Pharmacotherapy ; Prefrontal Cortex - metabolism ; Proto-Oncogene Proteins c-fos - drug effects ; Proto-Oncogene Proteins c-fos - metabolism ; Psychiatry ; Quinoxalines - pharmacology ; Raphe Nuclei - metabolism ; Rats ; Serotonin - metabolism ; Serotonin Uptake Inhibitors - pharmacology ; Veratridine - pharmacology</subject><ispartof>Translational psychiatry, 2017-02, Vol.7 (2), p.e1038-e1038</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017 The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-581029058a202afe75e04c6440a0a36a5bd4f43a78a2d5e28bd3f5fe55e337ac3</citedby><cites>FETCH-LOGICAL-c504t-581029058a202afe75e04c6440a0a36a5bd4f43a78a2d5e28bd3f5fe55e337ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438036/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438036/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,41099,42168,51554,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28221365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gasull-Camós, J</creatorcontrib><creatorcontrib>Tarrés-Gatius, M</creatorcontrib><creatorcontrib>Artigas, F</creatorcontrib><creatorcontrib>Castañé, A</creatorcontrib><title>Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats</title><title>Translational psychiatry</title><addtitle>Transl Psychiatry</addtitle><addtitle>Transl Psychiatry</addtitle><description>Ketamine and deep brain stimulation produce rapid antidepressant effects in humans and rodents. An increased AMPA receptor (AMPA-R) signaling in medial prefrontal cortex (mPFC) has been suggested to mediate these responses. However, little research has addressed the direct effects of enhancing glutamate tone or AMPA-R stimulation in mPFC subdivisions. The current study investigates the behavioral and neurochemical consequences of glutamate transporter-1 (GLT-1) blockade or s-AMPA microinfusion in the infralimbic (IL) and prelimbic (PrL) cortex. Owing to the connectivity between the mPFC and raphe nuclei, the role of serotonin is also explored. The bilateral microinfusion of the depolarizing agent veratridine into IL -but not PrL- of rats evoked immediate antidepressant-like responses. The same regional selectivity was observed after microinfusion of dihydrokainic acid (DHK), a selective inhibitor of GLT-1, present in astrocytes. The DHK-evoked antidepressant-like responses appear to be mediated by an AMPA-R-driven enhancement of serotonergic activity, as (i) they were prevented by NBQX 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt) and mimicked by s-AMPA; (ii) DHK and s-AMPA elevated similarly extracellular glutamate in IL and PrL, although extracellular 5-HT and
c-fos
expression in the midbrain dorsal raphe increased only when these agents were applied in IL; and (iii) DHK antidepressant-like responses were prevented by 5-HT synthesis inhibition and mimicked by citalopram microinfusion in IL. These results indicate that an acute increase of glutamatergic neurotransmission selectively in IL triggers immediate antidepressant-like responses in rats, likely mediated by the activation of IL–raphe pathways, which then results in a fast increase of serotonergic activity.</description><subject>631/154/436</subject><subject>631/378</subject><subject>692/699/476/1414</subject><subject>Affect - drug effects</subject><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology</subject><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Citalopram - pharmacology</subject><subject>Excitatory Amino Acid Agonists - pharmacology</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Amino Acid Transporter 2 - antagonists & inhibitors</subject><subject>Glutamic Acid - drug effects</subject><subject>Glutamic Acid - metabolism</subject><subject>Kainic Acid - analogs & derivatives</subject><subject>Kainic Acid - pharmacology</subject><subject>Limbic Lobe - cytology</subject><subject>Limbic Lobe - metabolism</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neuroglia - metabolism</subject><subject>Neurosciences</subject><subject>Original</subject><subject>original-article</subject><subject>Pharmacotherapy</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Proto-Oncogene Proteins c-fos - drug effects</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Psychiatry</subject><subject>Quinoxalines - pharmacology</subject><subject>Raphe Nuclei - metabolism</subject><subject>Rats</subject><subject>Serotonin - metabolism</subject><subject>Serotonin Uptake Inhibitors - pharmacology</subject><subject>Veratridine - pharmacology</subject><issn>2158-3188</issn><issn>2158-3188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNplkV9rFDEUxQdRbKl98AtIwBcVZs3fmeyLUIpuCwu-1OdwJ3Ozps1OxiRb7bc3y9ayagjkwvnl5ITTNK8ZXTAq9McyLzhl_aJ_1pxypnQrmNbPj-aT5jznW1qXkpr17GVzwjXnTHTqtImr4CGQ1fqmZWQI0d7BiMRPdbsEwW8Hb4mNqeAvApkAmfAnySVBwc0DKZHgfbxDkmD2I4Gp-BHnhDnXsQ2-Kugc2pL3lvVSftW8cBAynj-eZ823L59vLq_a9dfV9eXFurWKytIqzShfUqWBUw4Oe4VU2k5KChREB2oYpZMC-gqMCrkeRuGUQ6VQiB6sOGs-HXzn3bDF0eJUMwczJ7-F9GAiePO3MvnvZhPvjZJCU9FVg3ePBin-2GEuZuuzxRBgwrjLhumedpIqqir69h_0Nu7SVL9XqSWTSynEnnp_oGyKOSd0T2EYNfsmTZnNvknTV_bNcfon8k9vFfhwAHKVpg2moyf_c_sNJ3CniA</recordid><startdate>20170221</startdate><enddate>20170221</enddate><creator>Gasull-Camós, J</creator><creator>Tarrés-Gatius, M</creator><creator>Artigas, F</creator><creator>Castañé, A</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170221</creationdate><title>Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats</title><author>Gasull-Camós, J ; Tarrés-Gatius, M ; Artigas, F ; Castañé, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-581029058a202afe75e04c6440a0a36a5bd4f43a78a2d5e28bd3f5fe55e337ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/154/436</topic><topic>631/378</topic><topic>692/699/476/1414</topic><topic>Affect - drug effects</topic><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology</topic><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Citalopram - pharmacology</topic><topic>Excitatory Amino Acid Agonists - pharmacology</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Amino Acid Transporter 2 - antagonists & inhibitors</topic><topic>Glutamic Acid - drug effects</topic><topic>Glutamic Acid - metabolism</topic><topic>Kainic Acid - analogs & derivatives</topic><topic>Kainic Acid - pharmacology</topic><topic>Limbic Lobe - cytology</topic><topic>Limbic Lobe - metabolism</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neuroglia - metabolism</topic><topic>Neurosciences</topic><topic>Original</topic><topic>original-article</topic><topic>Pharmacotherapy</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Proto-Oncogene Proteins c-fos - drug effects</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Psychiatry</topic><topic>Quinoxalines - pharmacology</topic><topic>Raphe Nuclei - metabolism</topic><topic>Rats</topic><topic>Serotonin - metabolism</topic><topic>Serotonin Uptake Inhibitors - pharmacology</topic><topic>Veratridine - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gasull-Camós, J</creatorcontrib><creatorcontrib>Tarrés-Gatius, M</creatorcontrib><creatorcontrib>Artigas, F</creatorcontrib><creatorcontrib>Castañé, A</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gasull-Camós, J</au><au>Tarrés-Gatius, M</au><au>Artigas, F</au><au>Castañé, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats</atitle><jtitle>Translational psychiatry</jtitle><stitle>Transl Psychiatry</stitle><addtitle>Transl Psychiatry</addtitle><date>2017-02-21</date><risdate>2017</risdate><volume>7</volume><issue>2</issue><spage>e1038</spage><epage>e1038</epage><pages>e1038-e1038</pages><issn>2158-3188</issn><eissn>2158-3188</eissn><abstract>Ketamine and deep brain stimulation produce rapid antidepressant effects in humans and rodents. An increased AMPA receptor (AMPA-R) signaling in medial prefrontal cortex (mPFC) has been suggested to mediate these responses. However, little research has addressed the direct effects of enhancing glutamate tone or AMPA-R stimulation in mPFC subdivisions. The current study investigates the behavioral and neurochemical consequences of glutamate transporter-1 (GLT-1) blockade or s-AMPA microinfusion in the infralimbic (IL) and prelimbic (PrL) cortex. Owing to the connectivity between the mPFC and raphe nuclei, the role of serotonin is also explored. The bilateral microinfusion of the depolarizing agent veratridine into IL -but not PrL- of rats evoked immediate antidepressant-like responses. The same regional selectivity was observed after microinfusion of dihydrokainic acid (DHK), a selective inhibitor of GLT-1, present in astrocytes. The DHK-evoked antidepressant-like responses appear to be mediated by an AMPA-R-driven enhancement of serotonergic activity, as (i) they were prevented by NBQX 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt) and mimicked by s-AMPA; (ii) DHK and s-AMPA elevated similarly extracellular glutamate in IL and PrL, although extracellular 5-HT and
c-fos
expression in the midbrain dorsal raphe increased only when these agents were applied in IL; and (iii) DHK antidepressant-like responses were prevented by 5-HT synthesis inhibition and mimicked by citalopram microinfusion in IL. These results indicate that an acute increase of glutamatergic neurotransmission selectively in IL triggers immediate antidepressant-like responses in rats, likely mediated by the activation of IL–raphe pathways, which then results in a fast increase of serotonergic activity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28221365</pmid><doi>10.1038/tp.2017.7</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3188 |
ispartof | Translational psychiatry, 2017-02, Vol.7 (2), p.e1038-e1038 |
issn | 2158-3188 2158-3188 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438036 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/154/436 631/378 692/699/476/1414 Affect - drug effects alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology Animals Behavior, Animal - drug effects Behavioral Sciences Biological Psychology Citalopram - pharmacology Excitatory Amino Acid Agonists - pharmacology Excitatory Amino Acid Antagonists - pharmacology Excitatory Amino Acid Transporter 2 - antagonists & inhibitors Glutamic Acid - drug effects Glutamic Acid - metabolism Kainic Acid - analogs & derivatives Kainic Acid - pharmacology Limbic Lobe - cytology Limbic Lobe - metabolism Male Medicine Medicine & Public Health Neuroglia - metabolism Neurosciences Original original-article Pharmacotherapy Prefrontal Cortex - metabolism Proto-Oncogene Proteins c-fos - drug effects Proto-Oncogene Proteins c-fos - metabolism Psychiatry Quinoxalines - pharmacology Raphe Nuclei - metabolism Rats Serotonin - metabolism Serotonin Uptake Inhibitors - pharmacology Veratridine - pharmacology |
title | Glial GLT-1 blockade in infralimbic cortex as a new strategy to evoke rapid antidepressant-like effects in rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glial%20GLT-1%20blockade%20in%20infralimbic%20cortex%20as%20a%20new%20strategy%20to%20evoke%20rapid%20antidepressant-like%20effects%20in%20rats&rft.jtitle=Translational%20psychiatry&rft.au=Gasull-Cam%C3%B3s,%20J&rft.date=2017-02-21&rft.volume=7&rft.issue=2&rft.spage=e1038&rft.epage=e1038&rft.pages=e1038-e1038&rft.issn=2158-3188&rft.eissn=2158-3188&rft_id=info:doi/10.1038/tp.2017.7&rft_dat=%3Cproquest_pubme%3E4321970289%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891494335&rft_id=info:pmid/28221365&rfr_iscdi=true |