Chemistry-based molecular signature underlying the atypia of clozapine

The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational psychiatry 2017-02, Vol.7 (2), p.e1036-e1036
Hauptverfasser: Cardozo, T, Shmelkov, E, Felsovalyi, K, Swetnam, J, Butler, T, Malaspina, D, Shmelkov, S V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1036
container_issue 2
container_start_page e1036
container_title Translational psychiatry
container_volume 7
creator Cardozo, T
Shmelkov, E
Felsovalyi, K
Swetnam, J
Butler, T
Malaspina, D
Shmelkov, S V
description The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of molecules that govern psychiatric phenotypes is a major challenge. The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions. Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an in vivo biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine. Our novel in silico approach identifies the ensemble of potential drug targets based on the drug’s chemical structure and the region-specific gene expression profile of each target in the central nervous system. We subtracted the signature of the action of clozapine from that of a typical antipsychotic, chlorpromazine. Our results implicate dopamine D4 receptors in the pineal gland and muscarinic acetylcholine M1 (CHRM1) and M3 (CHRM3) receptors in the prefrontal cortex (PFC) as significant and unique to clozapine, whereas serotonin receptors 5-HT 2A in the PFC and 5-HT 2C in the caudate nucleus were common significant sites of action for both drugs. Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia. These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies.
doi_str_mv 10.1038/tp.2017.6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1870639708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ec12739428e4c74f16079c85b1cf8d287019003f4aec1fbc5e344574cff2e7443</originalsourceid><addsrcrecordid>eNplkU1LAzEQhoMoKurBPyALXlTYmq_dZC-CFL9A8KLnkKaTdmWbrElWqL_elKpUncsMzMM77_AidEzwiGAmL1M_opiIUb2F9impZMmIlNsb8x46ivEV56q4JILsoj0qKSWsbvbR7XgOizamsCwnOsK0WPgOzNDpUMR25nQaAhSDm0Lolq2bFWkOhU7LvtWFt4Xp_IfuWweHaMfqLsLRVz9AL7c3z-P78vHp7mF8_VgazmQqwRAqWMOpBG4Et6TGojGymhBj5ZRKgUmDMbNcZ9JOTAWM80pwYy0FwTk7QFdr3X6YLGBqwKWgO9WHdqHDUnndqt8b187VzL-rKt_HrMoCZ18Cwb8NEJPK3xvoOu3AD1GR7KFmjcAyo6d_0Fc_BJffy1RDuKwrVmfqfE2Z4GMMYH_MEKxWAanUq1VAasWebLr_Ib_jyMDFGoh55WYQNk7-U_sELyGZwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891486536</pqid></control><display><type>article</type><title>Chemistry-based molecular signature underlying the atypia of clozapine</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Cardozo, T ; Shmelkov, E ; Felsovalyi, K ; Swetnam, J ; Butler, T ; Malaspina, D ; Shmelkov, S V</creator><creatorcontrib>Cardozo, T ; Shmelkov, E ; Felsovalyi, K ; Swetnam, J ; Butler, T ; Malaspina, D ; Shmelkov, S V</creatorcontrib><description>The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of molecules that govern psychiatric phenotypes is a major challenge. The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions. Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an in vivo biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine. Our novel in silico approach identifies the ensemble of potential drug targets based on the drug’s chemical structure and the region-specific gene expression profile of each target in the central nervous system. We subtracted the signature of the action of clozapine from that of a typical antipsychotic, chlorpromazine. Our results implicate dopamine D4 receptors in the pineal gland and muscarinic acetylcholine M1 (CHRM1) and M3 (CHRM3) receptors in the prefrontal cortex (PFC) as significant and unique to clozapine, whereas serotonin receptors 5-HT 2A in the PFC and 5-HT 2C in the caudate nucleus were common significant sites of action for both drugs. Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia. These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies.</description><identifier>ISSN: 2158-3188</identifier><identifier>EISSN: 2158-3188</identifier><identifier>DOI: 10.1038/tp.2017.6</identifier><identifier>PMID: 28221369</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436/108 ; 631/378/340 ; Antipsychotic Agents - metabolism ; Behavioral Sciences ; Biological Psychology ; Brain - metabolism ; Caudate Nucleus - metabolism ; Chlorpromazine - metabolism ; Clozapine - metabolism ; Computer Simulation ; Humans ; Medicine ; Medicine &amp; Public Health ; Neurosciences ; Original ; original-article ; Pharmacotherapy ; Pineal Gland - metabolism ; Prefrontal Cortex - metabolism ; Psychiatry ; Receptor, Muscarinic M1 - metabolism ; Receptor, Muscarinic M3 - metabolism ; Receptor, Serotonin, 5-HT2A - metabolism ; Receptor, Serotonin, 5-HT2C - metabolism ; Receptors, Dopamine D4 - metabolism</subject><ispartof>Translational psychiatry, 2017-02, Vol.7 (2), p.e1036-e1036</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017 The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ec12739428e4c74f16079c85b1cf8d287019003f4aec1fbc5e344574cff2e7443</citedby><cites>FETCH-LOGICAL-c438t-ec12739428e4c74f16079c85b1cf8d287019003f4aec1fbc5e344574cff2e7443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438035/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438035/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28221369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardozo, T</creatorcontrib><creatorcontrib>Shmelkov, E</creatorcontrib><creatorcontrib>Felsovalyi, K</creatorcontrib><creatorcontrib>Swetnam, J</creatorcontrib><creatorcontrib>Butler, T</creatorcontrib><creatorcontrib>Malaspina, D</creatorcontrib><creatorcontrib>Shmelkov, S V</creatorcontrib><title>Chemistry-based molecular signature underlying the atypia of clozapine</title><title>Translational psychiatry</title><addtitle>Transl Psychiatry</addtitle><addtitle>Transl Psychiatry</addtitle><description>The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of molecules that govern psychiatric phenotypes is a major challenge. The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions. Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an in vivo biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine. Our novel in silico approach identifies the ensemble of potential drug targets based on the drug’s chemical structure and the region-specific gene expression profile of each target in the central nervous system. We subtracted the signature of the action of clozapine from that of a typical antipsychotic, chlorpromazine. Our results implicate dopamine D4 receptors in the pineal gland and muscarinic acetylcholine M1 (CHRM1) and M3 (CHRM3) receptors in the prefrontal cortex (PFC) as significant and unique to clozapine, whereas serotonin receptors 5-HT 2A in the PFC and 5-HT 2C in the caudate nucleus were common significant sites of action for both drugs. Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia. These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies.</description><subject>631/154/436/108</subject><subject>631/378/340</subject><subject>Antipsychotic Agents - metabolism</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Brain - metabolism</subject><subject>Caudate Nucleus - metabolism</subject><subject>Chlorpromazine - metabolism</subject><subject>Clozapine - metabolism</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neurosciences</subject><subject>Original</subject><subject>original-article</subject><subject>Pharmacotherapy</subject><subject>Pineal Gland - metabolism</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Psychiatry</subject><subject>Receptor, Muscarinic M1 - metabolism</subject><subject>Receptor, Muscarinic M3 - metabolism</subject><subject>Receptor, Serotonin, 5-HT2A - metabolism</subject><subject>Receptor, Serotonin, 5-HT2C - metabolism</subject><subject>Receptors, Dopamine D4 - metabolism</subject><issn>2158-3188</issn><issn>2158-3188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1LAzEQhoMoKurBPyALXlTYmq_dZC-CFL9A8KLnkKaTdmWbrElWqL_elKpUncsMzMM77_AidEzwiGAmL1M_opiIUb2F9impZMmIlNsb8x46ivEV56q4JILsoj0qKSWsbvbR7XgOizamsCwnOsK0WPgOzNDpUMR25nQaAhSDm0Lolq2bFWkOhU7LvtWFt4Xp_IfuWweHaMfqLsLRVz9AL7c3z-P78vHp7mF8_VgazmQqwRAqWMOpBG4Et6TGojGymhBj5ZRKgUmDMbNcZ9JOTAWM80pwYy0FwTk7QFdr3X6YLGBqwKWgO9WHdqHDUnndqt8b187VzL-rKt_HrMoCZ18Cwb8NEJPK3xvoOu3AD1GR7KFmjcAyo6d_0Fc_BJffy1RDuKwrVmfqfE2Z4GMMYH_MEKxWAanUq1VAasWebLr_Ib_jyMDFGoh55WYQNk7-U_sELyGZwg</recordid><startdate>20170221</startdate><enddate>20170221</enddate><creator>Cardozo, T</creator><creator>Shmelkov, E</creator><creator>Felsovalyi, K</creator><creator>Swetnam, J</creator><creator>Butler, T</creator><creator>Malaspina, D</creator><creator>Shmelkov, S V</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170221</creationdate><title>Chemistry-based molecular signature underlying the atypia of clozapine</title><author>Cardozo, T ; Shmelkov, E ; Felsovalyi, K ; Swetnam, J ; Butler, T ; Malaspina, D ; Shmelkov, S V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ec12739428e4c74f16079c85b1cf8d287019003f4aec1fbc5e344574cff2e7443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/154/436/108</topic><topic>631/378/340</topic><topic>Antipsychotic Agents - metabolism</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Brain - metabolism</topic><topic>Caudate Nucleus - metabolism</topic><topic>Chlorpromazine - metabolism</topic><topic>Clozapine - metabolism</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neurosciences</topic><topic>Original</topic><topic>original-article</topic><topic>Pharmacotherapy</topic><topic>Pineal Gland - metabolism</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Psychiatry</topic><topic>Receptor, Muscarinic M1 - metabolism</topic><topic>Receptor, Muscarinic M3 - metabolism</topic><topic>Receptor, Serotonin, 5-HT2A - metabolism</topic><topic>Receptor, Serotonin, 5-HT2C - metabolism</topic><topic>Receptors, Dopamine D4 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardozo, T</creatorcontrib><creatorcontrib>Shmelkov, E</creatorcontrib><creatorcontrib>Felsovalyi, K</creatorcontrib><creatorcontrib>Swetnam, J</creatorcontrib><creatorcontrib>Butler, T</creatorcontrib><creatorcontrib>Malaspina, D</creatorcontrib><creatorcontrib>Shmelkov, S V</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardozo, T</au><au>Shmelkov, E</au><au>Felsovalyi, K</au><au>Swetnam, J</au><au>Butler, T</au><au>Malaspina, D</au><au>Shmelkov, S V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemistry-based molecular signature underlying the atypia of clozapine</atitle><jtitle>Translational psychiatry</jtitle><stitle>Transl Psychiatry</stitle><addtitle>Transl Psychiatry</addtitle><date>2017-02-21</date><risdate>2017</risdate><volume>7</volume><issue>2</issue><spage>e1036</spage><epage>e1036</epage><pages>e1036-e1036</pages><issn>2158-3188</issn><eissn>2158-3188</eissn><abstract>The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of molecules that govern psychiatric phenotypes is a major challenge. The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions. Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an in vivo biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine. Our novel in silico approach identifies the ensemble of potential drug targets based on the drug’s chemical structure and the region-specific gene expression profile of each target in the central nervous system. We subtracted the signature of the action of clozapine from that of a typical antipsychotic, chlorpromazine. Our results implicate dopamine D4 receptors in the pineal gland and muscarinic acetylcholine M1 (CHRM1) and M3 (CHRM3) receptors in the prefrontal cortex (PFC) as significant and unique to clozapine, whereas serotonin receptors 5-HT 2A in the PFC and 5-HT 2C in the caudate nucleus were common significant sites of action for both drugs. Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia. These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28221369</pmid><doi>10.1038/tp.2017.6</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3188
ispartof Translational psychiatry, 2017-02, Vol.7 (2), p.e1036-e1036
issn 2158-3188
2158-3188
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438035
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals
subjects 631/154/436/108
631/378/340
Antipsychotic Agents - metabolism
Behavioral Sciences
Biological Psychology
Brain - metabolism
Caudate Nucleus - metabolism
Chlorpromazine - metabolism
Clozapine - metabolism
Computer Simulation
Humans
Medicine
Medicine & Public Health
Neurosciences
Original
original-article
Pharmacotherapy
Pineal Gland - metabolism
Prefrontal Cortex - metabolism
Psychiatry
Receptor, Muscarinic M1 - metabolism
Receptor, Muscarinic M3 - metabolism
Receptor, Serotonin, 5-HT2A - metabolism
Receptor, Serotonin, 5-HT2C - metabolism
Receptors, Dopamine D4 - metabolism
title Chemistry-based molecular signature underlying the atypia of clozapine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemistry-based%20molecular%20signature%20underlying%20the%20atypia%20of%20clozapine&rft.jtitle=Translational%20psychiatry&rft.au=Cardozo,%20T&rft.date=2017-02-21&rft.volume=7&rft.issue=2&rft.spage=e1036&rft.epage=e1036&rft.pages=e1036-e1036&rft.issn=2158-3188&rft.eissn=2158-3188&rft_id=info:doi/10.1038/tp.2017.6&rft_dat=%3Cproquest_pubme%3E1870639708%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891486536&rft_id=info:pmid/28221369&rfr_iscdi=true