Chemistry-based molecular signature underlying the atypia of clozapine
The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of m...
Gespeichert in:
Veröffentlicht in: | Translational psychiatry 2017-02, Vol.7 (2), p.e1036-e1036 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1036 |
---|---|
container_issue | 2 |
container_start_page | e1036 |
container_title | Translational psychiatry |
container_volume | 7 |
creator | Cardozo, T Shmelkov, E Felsovalyi, K Swetnam, J Butler, T Malaspina, D Shmelkov, S V |
description | The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of molecules that govern psychiatric phenotypes is a major challenge. The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions. Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an
in vivo
biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine. Our novel
in silico
approach identifies the ensemble of potential drug targets based on the drug’s chemical structure and the region-specific gene expression profile of each target in the central nervous system. We subtracted the signature of the action of clozapine from that of a typical antipsychotic, chlorpromazine. Our results implicate dopamine D4 receptors in the pineal gland and muscarinic acetylcholine M1 (CHRM1) and M3 (CHRM3) receptors in the prefrontal cortex (PFC) as significant and unique to clozapine, whereas serotonin receptors 5-HT
2A
in the PFC and 5-HT
2C
in the caudate nucleus were common significant sites of action for both drugs. Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia. These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies. |
doi_str_mv | 10.1038/tp.2017.6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1870639708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-ec12739428e4c74f16079c85b1cf8d287019003f4aec1fbc5e344574cff2e7443</originalsourceid><addsrcrecordid>eNplkU1LAzEQhoMoKurBPyALXlTYmq_dZC-CFL9A8KLnkKaTdmWbrElWqL_elKpUncsMzMM77_AidEzwiGAmL1M_opiIUb2F9impZMmIlNsb8x46ivEV56q4JILsoj0qKSWsbvbR7XgOizamsCwnOsK0WPgOzNDpUMR25nQaAhSDm0Lolq2bFWkOhU7LvtWFt4Xp_IfuWweHaMfqLsLRVz9AL7c3z-P78vHp7mF8_VgazmQqwRAqWMOpBG4Et6TGojGymhBj5ZRKgUmDMbNcZ9JOTAWM80pwYy0FwTk7QFdr3X6YLGBqwKWgO9WHdqHDUnndqt8b187VzL-rKt_HrMoCZ18Cwb8NEJPK3xvoOu3AD1GR7KFmjcAyo6d_0Fc_BJffy1RDuKwrVmfqfE2Z4GMMYH_MEKxWAanUq1VAasWebLr_Ib_jyMDFGoh55WYQNk7-U_sELyGZwg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891486536</pqid></control><display><type>article</type><title>Chemistry-based molecular signature underlying the atypia of clozapine</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA Free Journals</source><creator>Cardozo, T ; Shmelkov, E ; Felsovalyi, K ; Swetnam, J ; Butler, T ; Malaspina, D ; Shmelkov, S V</creator><creatorcontrib>Cardozo, T ; Shmelkov, E ; Felsovalyi, K ; Swetnam, J ; Butler, T ; Malaspina, D ; Shmelkov, S V</creatorcontrib><description>The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of molecules that govern psychiatric phenotypes is a major challenge. The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions. Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an
in vivo
biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine. Our novel
in silico
approach identifies the ensemble of potential drug targets based on the drug’s chemical structure and the region-specific gene expression profile of each target in the central nervous system. We subtracted the signature of the action of clozapine from that of a typical antipsychotic, chlorpromazine. Our results implicate dopamine D4 receptors in the pineal gland and muscarinic acetylcholine M1 (CHRM1) and M3 (CHRM3) receptors in the prefrontal cortex (PFC) as significant and unique to clozapine, whereas serotonin receptors 5-HT
2A
in the PFC and 5-HT
2C
in the caudate nucleus were common significant sites of action for both drugs. Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia. These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies.</description><identifier>ISSN: 2158-3188</identifier><identifier>EISSN: 2158-3188</identifier><identifier>DOI: 10.1038/tp.2017.6</identifier><identifier>PMID: 28221369</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/154/436/108 ; 631/378/340 ; Antipsychotic Agents - metabolism ; Behavioral Sciences ; Biological Psychology ; Brain - metabolism ; Caudate Nucleus - metabolism ; Chlorpromazine - metabolism ; Clozapine - metabolism ; Computer Simulation ; Humans ; Medicine ; Medicine & Public Health ; Neurosciences ; Original ; original-article ; Pharmacotherapy ; Pineal Gland - metabolism ; Prefrontal Cortex - metabolism ; Psychiatry ; Receptor, Muscarinic M1 - metabolism ; Receptor, Muscarinic M3 - metabolism ; Receptor, Serotonin, 5-HT2A - metabolism ; Receptor, Serotonin, 5-HT2C - metabolism ; Receptors, Dopamine D4 - metabolism</subject><ispartof>Translational psychiatry, 2017-02, Vol.7 (2), p.e1036-e1036</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><rights>Copyright © 2017 The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-ec12739428e4c74f16079c85b1cf8d287019003f4aec1fbc5e344574cff2e7443</citedby><cites>FETCH-LOGICAL-c438t-ec12739428e4c74f16079c85b1cf8d287019003f4aec1fbc5e344574cff2e7443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438035/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438035/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28221369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardozo, T</creatorcontrib><creatorcontrib>Shmelkov, E</creatorcontrib><creatorcontrib>Felsovalyi, K</creatorcontrib><creatorcontrib>Swetnam, J</creatorcontrib><creatorcontrib>Butler, T</creatorcontrib><creatorcontrib>Malaspina, D</creatorcontrib><creatorcontrib>Shmelkov, S V</creatorcontrib><title>Chemistry-based molecular signature underlying the atypia of clozapine</title><title>Translational psychiatry</title><addtitle>Transl Psychiatry</addtitle><addtitle>Transl Psychiatry</addtitle><description>The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of molecules that govern psychiatric phenotypes is a major challenge. The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions. Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an
in vivo
biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine. Our novel
in silico
approach identifies the ensemble of potential drug targets based on the drug’s chemical structure and the region-specific gene expression profile of each target in the central nervous system. We subtracted the signature of the action of clozapine from that of a typical antipsychotic, chlorpromazine. Our results implicate dopamine D4 receptors in the pineal gland and muscarinic acetylcholine M1 (CHRM1) and M3 (CHRM3) receptors in the prefrontal cortex (PFC) as significant and unique to clozapine, whereas serotonin receptors 5-HT
2A
in the PFC and 5-HT
2C
in the caudate nucleus were common significant sites of action for both drugs. Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia. These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies.</description><subject>631/154/436/108</subject><subject>631/378/340</subject><subject>Antipsychotic Agents - metabolism</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Brain - metabolism</subject><subject>Caudate Nucleus - metabolism</subject><subject>Chlorpromazine - metabolism</subject><subject>Clozapine - metabolism</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neurosciences</subject><subject>Original</subject><subject>original-article</subject><subject>Pharmacotherapy</subject><subject>Pineal Gland - metabolism</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Psychiatry</subject><subject>Receptor, Muscarinic M1 - metabolism</subject><subject>Receptor, Muscarinic M3 - metabolism</subject><subject>Receptor, Serotonin, 5-HT2A - metabolism</subject><subject>Receptor, Serotonin, 5-HT2C - metabolism</subject><subject>Receptors, Dopamine D4 - metabolism</subject><issn>2158-3188</issn><issn>2158-3188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkU1LAzEQhoMoKurBPyALXlTYmq_dZC-CFL9A8KLnkKaTdmWbrElWqL_elKpUncsMzMM77_AidEzwiGAmL1M_opiIUb2F9impZMmIlNsb8x46ivEV56q4JILsoj0qKSWsbvbR7XgOizamsCwnOsK0WPgOzNDpUMR25nQaAhSDm0Lolq2bFWkOhU7LvtWFt4Xp_IfuWweHaMfqLsLRVz9AL7c3z-P78vHp7mF8_VgazmQqwRAqWMOpBG4Et6TGojGymhBj5ZRKgUmDMbNcZ9JOTAWM80pwYy0FwTk7QFdr3X6YLGBqwKWgO9WHdqHDUnndqt8b187VzL-rKt_HrMoCZ18Cwb8NEJPK3xvoOu3AD1GR7KFmjcAyo6d_0Fc_BJffy1RDuKwrVmfqfE2Z4GMMYH_MEKxWAanUq1VAasWebLr_Ib_jyMDFGoh55WYQNk7-U_sELyGZwg</recordid><startdate>20170221</startdate><enddate>20170221</enddate><creator>Cardozo, T</creator><creator>Shmelkov, E</creator><creator>Felsovalyi, K</creator><creator>Swetnam, J</creator><creator>Butler, T</creator><creator>Malaspina, D</creator><creator>Shmelkov, S V</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170221</creationdate><title>Chemistry-based molecular signature underlying the atypia of clozapine</title><author>Cardozo, T ; Shmelkov, E ; Felsovalyi, K ; Swetnam, J ; Butler, T ; Malaspina, D ; Shmelkov, S V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-ec12739428e4c74f16079c85b1cf8d287019003f4aec1fbc5e344574cff2e7443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/154/436/108</topic><topic>631/378/340</topic><topic>Antipsychotic Agents - metabolism</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Brain - metabolism</topic><topic>Caudate Nucleus - metabolism</topic><topic>Chlorpromazine - metabolism</topic><topic>Clozapine - metabolism</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neurosciences</topic><topic>Original</topic><topic>original-article</topic><topic>Pharmacotherapy</topic><topic>Pineal Gland - metabolism</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Psychiatry</topic><topic>Receptor, Muscarinic M1 - metabolism</topic><topic>Receptor, Muscarinic M3 - metabolism</topic><topic>Receptor, Serotonin, 5-HT2A - metabolism</topic><topic>Receptor, Serotonin, 5-HT2C - metabolism</topic><topic>Receptors, Dopamine D4 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardozo, T</creatorcontrib><creatorcontrib>Shmelkov, E</creatorcontrib><creatorcontrib>Felsovalyi, K</creatorcontrib><creatorcontrib>Swetnam, J</creatorcontrib><creatorcontrib>Butler, T</creatorcontrib><creatorcontrib>Malaspina, D</creatorcontrib><creatorcontrib>Shmelkov, S V</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardozo, T</au><au>Shmelkov, E</au><au>Felsovalyi, K</au><au>Swetnam, J</au><au>Butler, T</au><au>Malaspina, D</au><au>Shmelkov, S V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemistry-based molecular signature underlying the atypia of clozapine</atitle><jtitle>Translational psychiatry</jtitle><stitle>Transl Psychiatry</stitle><addtitle>Transl Psychiatry</addtitle><date>2017-02-21</date><risdate>2017</risdate><volume>7</volume><issue>2</issue><spage>e1036</spage><epage>e1036</epage><pages>e1036-e1036</pages><issn>2158-3188</issn><eissn>2158-3188</eissn><abstract>The central nervous system is functionally organized as a dynamic network of interacting neural circuits that underlies observable behaviors. At higher resolution, these behaviors, or phenotypes, are defined by the activity of a specific set of biomolecules within those circuits. Identification of molecules that govern psychiatric phenotypes is a major challenge. The only organic molecular entities objectively associated with psychiatric phenotypes in humans are drugs that induce psychiatric phenotypes and drugs used for treatment of specific psychiatric conditions. Here, we identified candidate biomolecules contributing to the organic basis for psychosis by deriving an
in vivo
biomolecule-tissue signature for the atypical pharmacologic action of the antipsychotic drug clozapine. Our novel
in silico
approach identifies the ensemble of potential drug targets based on the drug’s chemical structure and the region-specific gene expression profile of each target in the central nervous system. We subtracted the signature of the action of clozapine from that of a typical antipsychotic, chlorpromazine. Our results implicate dopamine D4 receptors in the pineal gland and muscarinic acetylcholine M1 (CHRM1) and M3 (CHRM3) receptors in the prefrontal cortex (PFC) as significant and unique to clozapine, whereas serotonin receptors 5-HT
2A
in the PFC and 5-HT
2C
in the caudate nucleus were common significant sites of action for both drugs. Our results suggest that D4 and CHRM1 receptor activity in specific tissues may represent underappreciated drug targets to advance the pharmacologic treatment of schizophrenia. These findings may enhance our understanding of the organic basis of psychiatric disorders and help developing effective therapies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28221369</pmid><doi>10.1038/tp.2017.6</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3188 |
ispartof | Translational psychiatry, 2017-02, Vol.7 (2), p.e1036-e1036 |
issn | 2158-3188 2158-3188 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5438035 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA Free Journals |
subjects | 631/154/436/108 631/378/340 Antipsychotic Agents - metabolism Behavioral Sciences Biological Psychology Brain - metabolism Caudate Nucleus - metabolism Chlorpromazine - metabolism Clozapine - metabolism Computer Simulation Humans Medicine Medicine & Public Health Neurosciences Original original-article Pharmacotherapy Pineal Gland - metabolism Prefrontal Cortex - metabolism Psychiatry Receptor, Muscarinic M1 - metabolism Receptor, Muscarinic M3 - metabolism Receptor, Serotonin, 5-HT2A - metabolism Receptor, Serotonin, 5-HT2C - metabolism Receptors, Dopamine D4 - metabolism |
title | Chemistry-based molecular signature underlying the atypia of clozapine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemistry-based%20molecular%20signature%20underlying%20the%20atypia%20of%20clozapine&rft.jtitle=Translational%20psychiatry&rft.au=Cardozo,%20T&rft.date=2017-02-21&rft.volume=7&rft.issue=2&rft.spage=e1036&rft.epage=e1036&rft.pages=e1036-e1036&rft.issn=2158-3188&rft.eissn=2158-3188&rft_id=info:doi/10.1038/tp.2017.6&rft_dat=%3Cproquest_pubme%3E1870639708%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891486536&rft_id=info:pmid/28221369&rfr_iscdi=true |