The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors

Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RNA (Cambridge) 2017-06, Vol.23 (6), p.952-967
Hauptverfasser: Reimer, Kirsten A, Stark, Martha R, Aguilar, Lisbeth-Carolina, Stark, Sierra R, Burke, Robert D, Moore, Jack, Fahlman, Richard P, Yip, Calvin K, Kuroiwa, Haruko, Oeffinger, Marlene, Rader, Stephen D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 967
container_issue 6
container_start_page 952
container_title RNA (Cambridge)
container_volume 23
creator Reimer, Kirsten A
Stark, Martha R
Aguilar, Lisbeth-Carolina
Stark, Sierra R
Burke, Robert D
Moore, Jack
Fahlman, Richard P
Yip, Calvin K
Kuroiwa, Haruko
Oeffinger, Marlene
Rader, Stephen D
description Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus.
doi_str_mv 10.1261/rna.058487.116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5435867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880082089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-1aca06e24aa547376978c44770cc9295507e23e6c7253423ca992474a0f9a3923</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS1ERUvhyhFZ4sJlU3-u7QtSFVFAiooE5WwNXidx5bUXe1MIf31NU6rCaUYz7z3N6IfQK0oWlPX0rCRYEKmFVgtK-yfohIredIYQ-rT1XMpOc82O0fNar9uQt_UzdMw0Z80kTlC62npcc_R49XXELo9T9L9wSHi5hxSGkKvb7n_nhEdfcgSPodbsAsy-4p9h3uKp-G78cnmO6xSDC2mDIQ34bjL4TYEB5tDsa3BzLvUFOlpDrP7lfT1F3y7eXy0_dqvPHz4tz1edE1TPHQUHpPdMAEihuOqN0k4IpYhzhhkpifKM-94pJrlg3IExTCgBZG2AG8ZP0btD7rT7PvrB-TQXiHYqYYSytxmC_XeTwtZu8o2Vgkvdqxbw9j6g5B87X2c7hup8jJB83lVLtSZEM6JNk775T3qdd41LrJZRrokS_V3g4qByJdda_PrhGErsH5S2WewBpW0om-H14xce5H_Z8VtA3Joy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138074667</pqid></control><display><type>article</type><title>The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Reimer, Kirsten A ; Stark, Martha R ; Aguilar, Lisbeth-Carolina ; Stark, Sierra R ; Burke, Robert D ; Moore, Jack ; Fahlman, Richard P ; Yip, Calvin K ; Kuroiwa, Haruko ; Oeffinger, Marlene ; Rader, Stephen D</creator><creatorcontrib>Reimer, Kirsten A ; Stark, Martha R ; Aguilar, Lisbeth-Carolina ; Stark, Sierra R ; Burke, Robert D ; Moore, Jack ; Fahlman, Richard P ; Yip, Calvin K ; Kuroiwa, Haruko ; Oeffinger, Marlene ; Rader, Stephen D</creatorcontrib><description>Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.058487.116</identifier><identifier>PMID: 28325844</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Amino Acid Sequence ; Base Sequence ; Computational Biology - methods ; Cyanidioschyzon merolae ; Cytoplasm ; Eukaryotes ; Immunoprecipitation ; LSm proteins ; Mass spectroscopy ; Models, Molecular ; mRNA ; Nucleic Acid Conformation ; Pair bond ; Phylogeny ; Protein Binding ; Protein Conformation ; Protein Transport ; Proteins ; Rhodophyta - genetics ; Rhodophyta - metabolism ; RNA Precursors - chemistry ; RNA Precursors - genetics ; RNA Splicing ; RNA Stability ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Small Nuclear - chemistry ; RNA, Small Nuclear - genetics ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - metabolism ; Sm proteins ; snRNA ; Splicing ; Tandem Mass Spectrometry ; Unwinding</subject><ispartof>RNA (Cambridge), 2017-06, Vol.23 (6), p.952-967</ispartof><rights>2017 Reimer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Jun 2017</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-1aca06e24aa547376978c44770cc9295507e23e6c7253423ca992474a0f9a3923</citedby><cites>FETCH-LOGICAL-c418t-1aca06e24aa547376978c44770cc9295507e23e6c7253423ca992474a0f9a3923</cites><orcidid>0000-0002-7296-3733 ; 0000-0001-7242-1785 ; 0000-0002-5183-6110 ; 0000-0001-6427-1393 ; 0000-0003-1779-9501 ; 0000-0001-5527-4410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435867/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435867/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28325844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reimer, Kirsten A</creatorcontrib><creatorcontrib>Stark, Martha R</creatorcontrib><creatorcontrib>Aguilar, Lisbeth-Carolina</creatorcontrib><creatorcontrib>Stark, Sierra R</creatorcontrib><creatorcontrib>Burke, Robert D</creatorcontrib><creatorcontrib>Moore, Jack</creatorcontrib><creatorcontrib>Fahlman, Richard P</creatorcontrib><creatorcontrib>Yip, Calvin K</creatorcontrib><creatorcontrib>Kuroiwa, Haruko</creatorcontrib><creatorcontrib>Oeffinger, Marlene</creatorcontrib><creatorcontrib>Rader, Stephen D</creatorcontrib><title>The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors</title><title>RNA (Cambridge)</title><addtitle>RNA</addtitle><description>Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus.</description><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>Computational Biology - methods</subject><subject>Cyanidioschyzon merolae</subject><subject>Cytoplasm</subject><subject>Eukaryotes</subject><subject>Immunoprecipitation</subject><subject>LSm proteins</subject><subject>Mass spectroscopy</subject><subject>Models, Molecular</subject><subject>mRNA</subject><subject>Nucleic Acid Conformation</subject><subject>Pair bond</subject><subject>Phylogeny</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Rhodophyta - genetics</subject><subject>Rhodophyta - metabolism</subject><subject>RNA Precursors - chemistry</subject><subject>RNA Precursors - genetics</subject><subject>RNA Splicing</subject><subject>RNA Stability</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Small Nuclear - chemistry</subject><subject>RNA, Small Nuclear - genetics</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Sm proteins</subject><subject>snRNA</subject><subject>Splicing</subject><subject>Tandem Mass Spectrometry</subject><subject>Unwinding</subject><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS1ERUvhyhFZ4sJlU3-u7QtSFVFAiooE5WwNXidx5bUXe1MIf31NU6rCaUYz7z3N6IfQK0oWlPX0rCRYEKmFVgtK-yfohIredIYQ-rT1XMpOc82O0fNar9uQt_UzdMw0Z80kTlC62npcc_R49XXELo9T9L9wSHi5hxSGkKvb7n_nhEdfcgSPodbsAsy-4p9h3uKp-G78cnmO6xSDC2mDIQ34bjL4TYEB5tDsa3BzLvUFOlpDrP7lfT1F3y7eXy0_dqvPHz4tz1edE1TPHQUHpPdMAEihuOqN0k4IpYhzhhkpifKM-94pJrlg3IExTCgBZG2AG8ZP0btD7rT7PvrB-TQXiHYqYYSytxmC_XeTwtZu8o2Vgkvdqxbw9j6g5B87X2c7hup8jJB83lVLtSZEM6JNk775T3qdd41LrJZRrokS_V3g4qByJdda_PrhGErsH5S2WewBpW0om-H14xce5H_Z8VtA3Joy</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Reimer, Kirsten A</creator><creator>Stark, Martha R</creator><creator>Aguilar, Lisbeth-Carolina</creator><creator>Stark, Sierra R</creator><creator>Burke, Robert D</creator><creator>Moore, Jack</creator><creator>Fahlman, Richard P</creator><creator>Yip, Calvin K</creator><creator>Kuroiwa, Haruko</creator><creator>Oeffinger, Marlene</creator><creator>Rader, Stephen D</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7296-3733</orcidid><orcidid>https://orcid.org/0000-0001-7242-1785</orcidid><orcidid>https://orcid.org/0000-0002-5183-6110</orcidid><orcidid>https://orcid.org/0000-0001-6427-1393</orcidid><orcidid>https://orcid.org/0000-0003-1779-9501</orcidid><orcidid>https://orcid.org/0000-0001-5527-4410</orcidid></search><sort><creationdate>201706</creationdate><title>The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors</title><author>Reimer, Kirsten A ; Stark, Martha R ; Aguilar, Lisbeth-Carolina ; Stark, Sierra R ; Burke, Robert D ; Moore, Jack ; Fahlman, Richard P ; Yip, Calvin K ; Kuroiwa, Haruko ; Oeffinger, Marlene ; Rader, Stephen D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-1aca06e24aa547376978c44770cc9295507e23e6c7253423ca992474a0f9a3923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>Computational Biology - methods</topic><topic>Cyanidioschyzon merolae</topic><topic>Cytoplasm</topic><topic>Eukaryotes</topic><topic>Immunoprecipitation</topic><topic>LSm proteins</topic><topic>Mass spectroscopy</topic><topic>Models, Molecular</topic><topic>mRNA</topic><topic>Nucleic Acid Conformation</topic><topic>Pair bond</topic><topic>Phylogeny</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Rhodophyta - genetics</topic><topic>Rhodophyta - metabolism</topic><topic>RNA Precursors - chemistry</topic><topic>RNA Precursors - genetics</topic><topic>RNA Splicing</topic><topic>RNA Stability</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Small Nuclear - chemistry</topic><topic>RNA, Small Nuclear - genetics</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Sm proteins</topic><topic>snRNA</topic><topic>Splicing</topic><topic>Tandem Mass Spectrometry</topic><topic>Unwinding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reimer, Kirsten A</creatorcontrib><creatorcontrib>Stark, Martha R</creatorcontrib><creatorcontrib>Aguilar, Lisbeth-Carolina</creatorcontrib><creatorcontrib>Stark, Sierra R</creatorcontrib><creatorcontrib>Burke, Robert D</creatorcontrib><creatorcontrib>Moore, Jack</creatorcontrib><creatorcontrib>Fahlman, Richard P</creatorcontrib><creatorcontrib>Yip, Calvin K</creatorcontrib><creatorcontrib>Kuroiwa, Haruko</creatorcontrib><creatorcontrib>Oeffinger, Marlene</creatorcontrib><creatorcontrib>Rader, Stephen D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reimer, Kirsten A</au><au>Stark, Martha R</au><au>Aguilar, Lisbeth-Carolina</au><au>Stark, Sierra R</au><au>Burke, Robert D</au><au>Moore, Jack</au><au>Fahlman, Richard P</au><au>Yip, Calvin K</au><au>Kuroiwa, Haruko</au><au>Oeffinger, Marlene</au><au>Rader, Stephen D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors</atitle><jtitle>RNA (Cambridge)</jtitle><addtitle>RNA</addtitle><date>2017-06</date><risdate>2017</risdate><volume>23</volume><issue>6</issue><spage>952</spage><epage>967</epage><pages>952-967</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>28325844</pmid><doi>10.1261/rna.058487.116</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7296-3733</orcidid><orcidid>https://orcid.org/0000-0001-7242-1785</orcidid><orcidid>https://orcid.org/0000-0002-5183-6110</orcidid><orcidid>https://orcid.org/0000-0001-6427-1393</orcidid><orcidid>https://orcid.org/0000-0003-1779-9501</orcidid><orcidid>https://orcid.org/0000-0001-5527-4410</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-8382
ispartof RNA (Cambridge), 2017-06, Vol.23 (6), p.952-967
issn 1355-8382
1469-9001
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5435867
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Sequence
Base Sequence
Computational Biology - methods
Cyanidioschyzon merolae
Cytoplasm
Eukaryotes
Immunoprecipitation
LSm proteins
Mass spectroscopy
Models, Molecular
mRNA
Nucleic Acid Conformation
Pair bond
Phylogeny
Protein Binding
Protein Conformation
Protein Transport
Proteins
Rhodophyta - genetics
Rhodophyta - metabolism
RNA Precursors - chemistry
RNA Precursors - genetics
RNA Splicing
RNA Stability
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA, Small Nuclear - chemistry
RNA, Small Nuclear - genetics
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - metabolism
Sm proteins
snRNA
Splicing
Tandem Mass Spectrometry
Unwinding
title The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20sole%20LSm%20complex%20in%20Cyanidioschyzon%20merolae%20associates%20with%20pre-mRNA%20splicing%20and%20mRNA%20degradation%20factors&rft.jtitle=RNA%20(Cambridge)&rft.au=Reimer,%20Kirsten%20A&rft.date=2017-06&rft.volume=23&rft.issue=6&rft.spage=952&rft.epage=967&rft.pages=952-967&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.058487.116&rft_dat=%3Cproquest_pubme%3E1880082089%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138074667&rft_id=info:pmid/28325844&rfr_iscdi=true