The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors
Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have bee...
Gespeichert in:
Veröffentlicht in: | RNA (Cambridge) 2017-06, Vol.23 (6), p.952-967 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 967 |
---|---|
container_issue | 6 |
container_start_page | 952 |
container_title | RNA (Cambridge) |
container_volume | 23 |
creator | Reimer, Kirsten A Stark, Martha R Aguilar, Lisbeth-Carolina Stark, Sierra R Burke, Robert D Moore, Jack Fahlman, Richard P Yip, Calvin K Kuroiwa, Haruko Oeffinger, Marlene Rader, Stephen D |
description | Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga
and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the
LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus. |
doi_str_mv | 10.1261/rna.058487.116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5435867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880082089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-1aca06e24aa547376978c44770cc9295507e23e6c7253423ca992474a0f9a3923</originalsourceid><addsrcrecordid>eNpdkc1vEzEQxS1ERUvhyhFZ4sJlU3-u7QtSFVFAiooE5WwNXidx5bUXe1MIf31NU6rCaUYz7z3N6IfQK0oWlPX0rCRYEKmFVgtK-yfohIredIYQ-rT1XMpOc82O0fNar9uQt_UzdMw0Z80kTlC62npcc_R49XXELo9T9L9wSHi5hxSGkKvb7n_nhEdfcgSPodbsAsy-4p9h3uKp-G78cnmO6xSDC2mDIQ34bjL4TYEB5tDsa3BzLvUFOlpDrP7lfT1F3y7eXy0_dqvPHz4tz1edE1TPHQUHpPdMAEihuOqN0k4IpYhzhhkpifKM-94pJrlg3IExTCgBZG2AG8ZP0btD7rT7PvrB-TQXiHYqYYSytxmC_XeTwtZu8o2Vgkvdqxbw9j6g5B87X2c7hup8jJB83lVLtSZEM6JNk775T3qdd41LrJZRrokS_V3g4qByJdda_PrhGErsH5S2WewBpW0om-H14xce5H_Z8VtA3Joy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2138074667</pqid></control><display><type>article</type><title>The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Reimer, Kirsten A ; Stark, Martha R ; Aguilar, Lisbeth-Carolina ; Stark, Sierra R ; Burke, Robert D ; Moore, Jack ; Fahlman, Richard P ; Yip, Calvin K ; Kuroiwa, Haruko ; Oeffinger, Marlene ; Rader, Stephen D</creator><creatorcontrib>Reimer, Kirsten A ; Stark, Martha R ; Aguilar, Lisbeth-Carolina ; Stark, Sierra R ; Burke, Robert D ; Moore, Jack ; Fahlman, Richard P ; Yip, Calvin K ; Kuroiwa, Haruko ; Oeffinger, Marlene ; Rader, Stephen D</creatorcontrib><description>Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga
and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the
LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus.</description><identifier>ISSN: 1355-8382</identifier><identifier>EISSN: 1469-9001</identifier><identifier>DOI: 10.1261/rna.058487.116</identifier><identifier>PMID: 28325844</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Amino Acid Sequence ; Base Sequence ; Computational Biology - methods ; Cyanidioschyzon merolae ; Cytoplasm ; Eukaryotes ; Immunoprecipitation ; LSm proteins ; Mass spectroscopy ; Models, Molecular ; mRNA ; Nucleic Acid Conformation ; Pair bond ; Phylogeny ; Protein Binding ; Protein Conformation ; Protein Transport ; Proteins ; Rhodophyta - genetics ; Rhodophyta - metabolism ; RNA Precursors - chemistry ; RNA Precursors - genetics ; RNA Splicing ; RNA Stability ; RNA, Messenger - chemistry ; RNA, Messenger - genetics ; RNA, Small Nuclear - chemistry ; RNA, Small Nuclear - genetics ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - metabolism ; Sm proteins ; snRNA ; Splicing ; Tandem Mass Spectrometry ; Unwinding</subject><ispartof>RNA (Cambridge), 2017-06, Vol.23 (6), p.952-967</ispartof><rights>2017 Reimer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Jun 2017</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-1aca06e24aa547376978c44770cc9295507e23e6c7253423ca992474a0f9a3923</citedby><cites>FETCH-LOGICAL-c418t-1aca06e24aa547376978c44770cc9295507e23e6c7253423ca992474a0f9a3923</cites><orcidid>0000-0002-7296-3733 ; 0000-0001-7242-1785 ; 0000-0002-5183-6110 ; 0000-0001-6427-1393 ; 0000-0003-1779-9501 ; 0000-0001-5527-4410</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435867/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435867/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28325844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reimer, Kirsten A</creatorcontrib><creatorcontrib>Stark, Martha R</creatorcontrib><creatorcontrib>Aguilar, Lisbeth-Carolina</creatorcontrib><creatorcontrib>Stark, Sierra R</creatorcontrib><creatorcontrib>Burke, Robert D</creatorcontrib><creatorcontrib>Moore, Jack</creatorcontrib><creatorcontrib>Fahlman, Richard P</creatorcontrib><creatorcontrib>Yip, Calvin K</creatorcontrib><creatorcontrib>Kuroiwa, Haruko</creatorcontrib><creatorcontrib>Oeffinger, Marlene</creatorcontrib><creatorcontrib>Rader, Stephen D</creatorcontrib><title>The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors</title><title>RNA (Cambridge)</title><addtitle>RNA</addtitle><description>Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga
and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the
LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus.</description><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>Computational Biology - methods</subject><subject>Cyanidioschyzon merolae</subject><subject>Cytoplasm</subject><subject>Eukaryotes</subject><subject>Immunoprecipitation</subject><subject>LSm proteins</subject><subject>Mass spectroscopy</subject><subject>Models, Molecular</subject><subject>mRNA</subject><subject>Nucleic Acid Conformation</subject><subject>Pair bond</subject><subject>Phylogeny</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Rhodophyta - genetics</subject><subject>Rhodophyta - metabolism</subject><subject>RNA Precursors - chemistry</subject><subject>RNA Precursors - genetics</subject><subject>RNA Splicing</subject><subject>RNA Stability</subject><subject>RNA, Messenger - chemistry</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Small Nuclear - chemistry</subject><subject>RNA, Small Nuclear - genetics</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Sm proteins</subject><subject>snRNA</subject><subject>Splicing</subject><subject>Tandem Mass Spectrometry</subject><subject>Unwinding</subject><issn>1355-8382</issn><issn>1469-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1vEzEQxS1ERUvhyhFZ4sJlU3-u7QtSFVFAiooE5WwNXidx5bUXe1MIf31NU6rCaUYz7z3N6IfQK0oWlPX0rCRYEKmFVgtK-yfohIredIYQ-rT1XMpOc82O0fNar9uQt_UzdMw0Z80kTlC62npcc_R49XXELo9T9L9wSHi5hxSGkKvb7n_nhEdfcgSPodbsAsy-4p9h3uKp-G78cnmO6xSDC2mDIQ34bjL4TYEB5tDsa3BzLvUFOlpDrP7lfT1F3y7eXy0_dqvPHz4tz1edE1TPHQUHpPdMAEihuOqN0k4IpYhzhhkpifKM-94pJrlg3IExTCgBZG2AG8ZP0btD7rT7PvrB-TQXiHYqYYSytxmC_XeTwtZu8o2Vgkvdqxbw9j6g5B87X2c7hup8jJB83lVLtSZEM6JNk775T3qdd41LrJZRrokS_V3g4qByJdda_PrhGErsH5S2WewBpW0om-H14xce5H_Z8VtA3Joy</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Reimer, Kirsten A</creator><creator>Stark, Martha R</creator><creator>Aguilar, Lisbeth-Carolina</creator><creator>Stark, Sierra R</creator><creator>Burke, Robert D</creator><creator>Moore, Jack</creator><creator>Fahlman, Richard P</creator><creator>Yip, Calvin K</creator><creator>Kuroiwa, Haruko</creator><creator>Oeffinger, Marlene</creator><creator>Rader, Stephen D</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7296-3733</orcidid><orcidid>https://orcid.org/0000-0001-7242-1785</orcidid><orcidid>https://orcid.org/0000-0002-5183-6110</orcidid><orcidid>https://orcid.org/0000-0001-6427-1393</orcidid><orcidid>https://orcid.org/0000-0003-1779-9501</orcidid><orcidid>https://orcid.org/0000-0001-5527-4410</orcidid></search><sort><creationdate>201706</creationdate><title>The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors</title><author>Reimer, Kirsten A ; Stark, Martha R ; Aguilar, Lisbeth-Carolina ; Stark, Sierra R ; Burke, Robert D ; Moore, Jack ; Fahlman, Richard P ; Yip, Calvin K ; Kuroiwa, Haruko ; Oeffinger, Marlene ; Rader, Stephen D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-1aca06e24aa547376978c44770cc9295507e23e6c7253423ca992474a0f9a3923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>Computational Biology - methods</topic><topic>Cyanidioschyzon merolae</topic><topic>Cytoplasm</topic><topic>Eukaryotes</topic><topic>Immunoprecipitation</topic><topic>LSm proteins</topic><topic>Mass spectroscopy</topic><topic>Models, Molecular</topic><topic>mRNA</topic><topic>Nucleic Acid Conformation</topic><topic>Pair bond</topic><topic>Phylogeny</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Rhodophyta - genetics</topic><topic>Rhodophyta - metabolism</topic><topic>RNA Precursors - chemistry</topic><topic>RNA Precursors - genetics</topic><topic>RNA Splicing</topic><topic>RNA Stability</topic><topic>RNA, Messenger - chemistry</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Small Nuclear - chemistry</topic><topic>RNA, Small Nuclear - genetics</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Sm proteins</topic><topic>snRNA</topic><topic>Splicing</topic><topic>Tandem Mass Spectrometry</topic><topic>Unwinding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reimer, Kirsten A</creatorcontrib><creatorcontrib>Stark, Martha R</creatorcontrib><creatorcontrib>Aguilar, Lisbeth-Carolina</creatorcontrib><creatorcontrib>Stark, Sierra R</creatorcontrib><creatorcontrib>Burke, Robert D</creatorcontrib><creatorcontrib>Moore, Jack</creatorcontrib><creatorcontrib>Fahlman, Richard P</creatorcontrib><creatorcontrib>Yip, Calvin K</creatorcontrib><creatorcontrib>Kuroiwa, Haruko</creatorcontrib><creatorcontrib>Oeffinger, Marlene</creatorcontrib><creatorcontrib>Rader, Stephen D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RNA (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reimer, Kirsten A</au><au>Stark, Martha R</au><au>Aguilar, Lisbeth-Carolina</au><au>Stark, Sierra R</au><au>Burke, Robert D</au><au>Moore, Jack</au><au>Fahlman, Richard P</au><au>Yip, Calvin K</au><au>Kuroiwa, Haruko</au><au>Oeffinger, Marlene</au><au>Rader, Stephen D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors</atitle><jtitle>RNA (Cambridge)</jtitle><addtitle>RNA</addtitle><date>2017-06</date><risdate>2017</risdate><volume>23</volume><issue>6</issue><spage>952</spage><epage>967</epage><pages>952-967</pages><issn>1355-8382</issn><eissn>1469-9001</eissn><abstract>Proteins of the Sm and Sm-like (LSm) families, referred to collectively as (L)Sm proteins, are found in all three domains of life and are known to promote a variety of RNA processes such as base-pair formation, unwinding, RNA degradation, and RNA stabilization. In eukaryotes, (L)Sm proteins have been studied, inter alia, for their role in pre-mRNA splicing. In many organisms, the LSm proteins form two distinct complexes, one consisting of LSm1-7 that is involved in mRNA degradation in the cytoplasm, and the other consisting of LSm2-8 that binds spliceosomal U6 snRNA in the nucleus. We recently characterized the splicing proteins from the red alga
and found that it has only seven LSm proteins. The identities of CmLSm2-CmLSm7 were unambiguous, but the seventh protein was similar to LSm1 and LSm8. Here, we use in vitro binding measurements, microscopy, and affinity purification-mass spectrometry to demonstrate a canonical splicing function for the
LSm complex and experimentally validate our bioinformatic predictions of a reduced spliceosome in this organism. Copurification of Pat1 and its associated mRNA degradation proteins with the LSm proteins, along with evidence of a cytoplasmic fraction of CmLSm complexes, argues that this complex is involved in both splicing and cytoplasmic mRNA degradation. Intriguingly, the Pat1 complex also copurifies with all four snRNAs, suggesting the possibility of a spliceosome-associated pre-mRNA degradation complex in the nucleus.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>28325844</pmid><doi>10.1261/rna.058487.116</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7296-3733</orcidid><orcidid>https://orcid.org/0000-0001-7242-1785</orcidid><orcidid>https://orcid.org/0000-0002-5183-6110</orcidid><orcidid>https://orcid.org/0000-0001-6427-1393</orcidid><orcidid>https://orcid.org/0000-0003-1779-9501</orcidid><orcidid>https://orcid.org/0000-0001-5527-4410</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-8382 |
ispartof | RNA (Cambridge), 2017-06, Vol.23 (6), p.952-967 |
issn | 1355-8382 1469-9001 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5435867 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Base Sequence Computational Biology - methods Cyanidioschyzon merolae Cytoplasm Eukaryotes Immunoprecipitation LSm proteins Mass spectroscopy Models, Molecular mRNA Nucleic Acid Conformation Pair bond Phylogeny Protein Binding Protein Conformation Protein Transport Proteins Rhodophyta - genetics Rhodophyta - metabolism RNA Precursors - chemistry RNA Precursors - genetics RNA Splicing RNA Stability RNA, Messenger - chemistry RNA, Messenger - genetics RNA, Small Nuclear - chemistry RNA, Small Nuclear - genetics RNA-Binding Proteins - chemistry RNA-Binding Proteins - metabolism Sm proteins snRNA Splicing Tandem Mass Spectrometry Unwinding |
title | The sole LSm complex in Cyanidioschyzon merolae associates with pre-mRNA splicing and mRNA degradation factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A08%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20sole%20LSm%20complex%20in%20Cyanidioschyzon%20merolae%20associates%20with%20pre-mRNA%20splicing%20and%20mRNA%20degradation%20factors&rft.jtitle=RNA%20(Cambridge)&rft.au=Reimer,%20Kirsten%20A&rft.date=2017-06&rft.volume=23&rft.issue=6&rft.spage=952&rft.epage=967&rft.pages=952-967&rft.issn=1355-8382&rft.eissn=1469-9001&rft_id=info:doi/10.1261/rna.058487.116&rft_dat=%3Cproquest_pubme%3E1880082089%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2138074667&rft_id=info:pmid/28325844&rfr_iscdi=true |