Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations

Spreading depolarizations cause cortical electrical potential changes over a wide spectral range that includes slow potentials approaching the direct current (or 0 Hz) level. The negative direct current shift (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cerebral blood flow and metabolism 2017-05, Vol.37 (5), p.1857-1870
Hauptverfasser: Hartings, Jed A, Li, Chunyan, Hinzman, Jason M, Shuttleworth, C William, Ernst, Griffin L, Dreier, Jens P, Wilson, J Adam, Andaluz, Norberto, Foreman, Brandon, Carlson, Andrew P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1870
container_issue 5
container_start_page 1857
container_title Journal of cerebral blood flow and metabolism
container_volume 37
creator Hartings, Jed A
Li, Chunyan
Hinzman, Jason M
Shuttleworth, C William
Ernst, Griffin L
Dreier, Jens P
Wilson, J Adam
Andaluz, Norberto
Foreman, Brandon
Carlson, Andrew P
description Spreading depolarizations cause cortical electrical potential changes over a wide spectral range that includes slow potentials approaching the direct current (or 0 Hz) level. The negative direct current shift (
doi_str_mv 10.1177/0271678X16653135
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5435287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0271678X16653135</sage_id><sourcerecordid>1826707379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-70a62f6c9256ade2acd56d3ed1746bc8e3f3ccdae1eab9b2997c0629cd91cba03</originalsourceid><addsrcrecordid>eNp1UU1r3TAQFKWleUl776n42ItbfUSSdSmU9BMCvSTQSxHyav2i4Ce5KzuQ_vr48dLQFnJalpmdnd1h7JXgb4Ww9h2XVhjb_RDGaCWUfsI2QmvXWi7MU7bZw-0eP2LHtV5zzjul9XN2JK3sjOvEhv38mAhhbmAhwjw3OK4dFSg0JyhbCtPVbTMUamBMOUEYm4wLlV3JaS6U8rYpQ1MnwhD3TcSpjIHS7zCnkusL9mwIY8WX9_WEXX7-dHH2tT3__uXb2YfzFjTn82o3GDkYcFKbEFEGiNpEhVHYU9NDh2pQADGgwNC7XjpngRvpIDoBfeDqhL0_6E5Lv8MI6yUURj9R2gW69SUk_y-S05XflhuvT5WWnV0F3twLUPm1YJ39LlXAcQwZy1K96KSx3CrrVio_UIFKrYTDwxrB_T4V_38q68jrv-09DPyJYSW0B0INW_TXZaG8vutxwTuyPpoB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826707379</pqid></control><display><type>article</type><title>Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations</title><source>Electronic Journals Library</source><source>PubMed Central (Open Access)</source><source>MEDLINE</source><source>SAGE Journals Online</source><creator>Hartings, Jed A ; Li, Chunyan ; Hinzman, Jason M ; Shuttleworth, C William ; Ernst, Griffin L ; Dreier, Jens P ; Wilson, J Adam ; Andaluz, Norberto ; Foreman, Brandon ; Carlson, Andrew P</creator><creatorcontrib>Hartings, Jed A ; Li, Chunyan ; Hinzman, Jason M ; Shuttleworth, C William ; Ernst, Griffin L ; Dreier, Jens P ; Wilson, J Adam ; Andaluz, Norberto ; Foreman, Brandon ; Carlson, Andrew P</creatorcontrib><description>Spreading depolarizations cause cortical electrical potential changes over a wide spectral range that includes slow potentials approaching the direct current (or 0 Hz) level. The negative direct current shift (&lt;0.05 Hz) is an important identifier of cortical depolarization and its duration is a measure of potential tissue injury associated with longer lasting depolarizations. To determine the feasibility of monitoring the full signal bandwidth of spreading depolarizations in patients, we performed subdural electrocorticography using platinum electrode strips and direct current-coupled amplifiers in 27 patients with acute brain injury at two neurosurgical centers. While large baseline direct current offsets developed, loss of data due to amplifier saturation was minimal and rates of baseline drift throughout recordings were generally low. Transient negative direct current shifts of spreading depolarizations were easily recognized and in 306/551 (56%) cases had stereotyped, measurable characteristics. Following a standardized training session, novice scorers achieved a high degree of accuracy and interobserver reliability in identifying depolarizations, suggesting that direct current-coupled recordings can facilitate bedside diagnosis for future trials or clinical decision-making. We conclude that intracranial monitoring of slow potentials can be achieved with platinum electrodes and that unfiltered, direct current-coupled recordings are advantageous for identifying and assessing the impact of spreading depolarizations.</description><identifier>ISSN: 0271-678X</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1177/0271678X16653135</identifier><identifier>PMID: 27286981</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Brain Injuries - diagnosis ; Brain Injuries - physiopathology ; Brain Injuries - therapy ; Cortical Spreading Depression - physiology ; Critical Care - methods ; Electrocorticography ; Female ; Humans ; Male ; Middle Aged ; Neurophysiological Monitoring - methods ; Original ; Prospective Studies</subject><ispartof>Journal of cerebral blood flow and metabolism, 2017-05, Vol.37 (5), p.1857-1870</ispartof><rights>The Author(s) 2016</rights><rights>The Author(s) 2016 2016 International Society for Cerebral Blood Flow and Metabolism</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-70a62f6c9256ade2acd56d3ed1746bc8e3f3ccdae1eab9b2997c0629cd91cba03</citedby><cites>FETCH-LOGICAL-c500t-70a62f6c9256ade2acd56d3ed1746bc8e3f3ccdae1eab9b2997c0629cd91cba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435287/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435287/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21798,27901,27902,43597,43598,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27286981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartings, Jed A</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Hinzman, Jason M</creatorcontrib><creatorcontrib>Shuttleworth, C William</creatorcontrib><creatorcontrib>Ernst, Griffin L</creatorcontrib><creatorcontrib>Dreier, Jens P</creatorcontrib><creatorcontrib>Wilson, J Adam</creatorcontrib><creatorcontrib>Andaluz, Norberto</creatorcontrib><creatorcontrib>Foreman, Brandon</creatorcontrib><creatorcontrib>Carlson, Andrew P</creatorcontrib><title>Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Spreading depolarizations cause cortical electrical potential changes over a wide spectral range that includes slow potentials approaching the direct current (or 0 Hz) level. The negative direct current shift (&lt;0.05 Hz) is an important identifier of cortical depolarization and its duration is a measure of potential tissue injury associated with longer lasting depolarizations. To determine the feasibility of monitoring the full signal bandwidth of spreading depolarizations in patients, we performed subdural electrocorticography using platinum electrode strips and direct current-coupled amplifiers in 27 patients with acute brain injury at two neurosurgical centers. While large baseline direct current offsets developed, loss of data due to amplifier saturation was minimal and rates of baseline drift throughout recordings were generally low. Transient negative direct current shifts of spreading depolarizations were easily recognized and in 306/551 (56%) cases had stereotyped, measurable characteristics. Following a standardized training session, novice scorers achieved a high degree of accuracy and interobserver reliability in identifying depolarizations, suggesting that direct current-coupled recordings can facilitate bedside diagnosis for future trials or clinical decision-making. We conclude that intracranial monitoring of slow potentials can be achieved with platinum electrodes and that unfiltered, direct current-coupled recordings are advantageous for identifying and assessing the impact of spreading depolarizations.</description><subject>Brain Injuries - diagnosis</subject><subject>Brain Injuries - physiopathology</subject><subject>Brain Injuries - therapy</subject><subject>Cortical Spreading Depression - physiology</subject><subject>Critical Care - methods</subject><subject>Electrocorticography</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neurophysiological Monitoring - methods</subject><subject>Original</subject><subject>Prospective Studies</subject><issn>0271-678X</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UU1r3TAQFKWleUl776n42ItbfUSSdSmU9BMCvSTQSxHyav2i4Ce5KzuQ_vr48dLQFnJalpmdnd1h7JXgb4Ww9h2XVhjb_RDGaCWUfsI2QmvXWi7MU7bZw-0eP2LHtV5zzjul9XN2JK3sjOvEhv38mAhhbmAhwjw3OK4dFSg0JyhbCtPVbTMUamBMOUEYm4wLlV3JaS6U8rYpQ1MnwhD3TcSpjIHS7zCnkusL9mwIY8WX9_WEXX7-dHH2tT3__uXb2YfzFjTn82o3GDkYcFKbEFEGiNpEhVHYU9NDh2pQADGgwNC7XjpngRvpIDoBfeDqhL0_6E5Lv8MI6yUURj9R2gW69SUk_y-S05XflhuvT5WWnV0F3twLUPm1YJ39LlXAcQwZy1K96KSx3CrrVio_UIFKrYTDwxrB_T4V_38q68jrv-09DPyJYSW0B0INW_TXZaG8vutxwTuyPpoB</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Hartings, Jed A</creator><creator>Li, Chunyan</creator><creator>Hinzman, Jason M</creator><creator>Shuttleworth, C William</creator><creator>Ernst, Griffin L</creator><creator>Dreier, Jens P</creator><creator>Wilson, J Adam</creator><creator>Andaluz, Norberto</creator><creator>Foreman, Brandon</creator><creator>Carlson, Andrew P</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170501</creationdate><title>Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations</title><author>Hartings, Jed A ; Li, Chunyan ; Hinzman, Jason M ; Shuttleworth, C William ; Ernst, Griffin L ; Dreier, Jens P ; Wilson, J Adam ; Andaluz, Norberto ; Foreman, Brandon ; Carlson, Andrew P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-70a62f6c9256ade2acd56d3ed1746bc8e3f3ccdae1eab9b2997c0629cd91cba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain Injuries - diagnosis</topic><topic>Brain Injuries - physiopathology</topic><topic>Brain Injuries - therapy</topic><topic>Cortical Spreading Depression - physiology</topic><topic>Critical Care - methods</topic><topic>Electrocorticography</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neurophysiological Monitoring - methods</topic><topic>Original</topic><topic>Prospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartings, Jed A</creatorcontrib><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Hinzman, Jason M</creatorcontrib><creatorcontrib>Shuttleworth, C William</creatorcontrib><creatorcontrib>Ernst, Griffin L</creatorcontrib><creatorcontrib>Dreier, Jens P</creatorcontrib><creatorcontrib>Wilson, J Adam</creatorcontrib><creatorcontrib>Andaluz, Norberto</creatorcontrib><creatorcontrib>Foreman, Brandon</creatorcontrib><creatorcontrib>Carlson, Andrew P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartings, Jed A</au><au>Li, Chunyan</au><au>Hinzman, Jason M</au><au>Shuttleworth, C William</au><au>Ernst, Griffin L</au><au>Dreier, Jens P</au><au>Wilson, J Adam</au><au>Andaluz, Norberto</au><au>Foreman, Brandon</au><au>Carlson, Andrew P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>37</volume><issue>5</issue><spage>1857</spage><epage>1870</epage><pages>1857-1870</pages><issn>0271-678X</issn><eissn>1559-7016</eissn><abstract>Spreading depolarizations cause cortical electrical potential changes over a wide spectral range that includes slow potentials approaching the direct current (or 0 Hz) level. The negative direct current shift (&lt;0.05 Hz) is an important identifier of cortical depolarization and its duration is a measure of potential tissue injury associated with longer lasting depolarizations. To determine the feasibility of monitoring the full signal bandwidth of spreading depolarizations in patients, we performed subdural electrocorticography using platinum electrode strips and direct current-coupled amplifiers in 27 patients with acute brain injury at two neurosurgical centers. While large baseline direct current offsets developed, loss of data due to amplifier saturation was minimal and rates of baseline drift throughout recordings were generally low. Transient negative direct current shifts of spreading depolarizations were easily recognized and in 306/551 (56%) cases had stereotyped, measurable characteristics. Following a standardized training session, novice scorers achieved a high degree of accuracy and interobserver reliability in identifying depolarizations, suggesting that direct current-coupled recordings can facilitate bedside diagnosis for future trials or clinical decision-making. We conclude that intracranial monitoring of slow potentials can be achieved with platinum electrodes and that unfiltered, direct current-coupled recordings are advantageous for identifying and assessing the impact of spreading depolarizations.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>27286981</pmid><doi>10.1177/0271678X16653135</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-678X
ispartof Journal of cerebral blood flow and metabolism, 2017-05, Vol.37 (5), p.1857-1870
issn 0271-678X
1559-7016
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5435287
source Electronic Journals Library; PubMed Central (Open Access); MEDLINE; SAGE Journals Online
subjects Brain Injuries - diagnosis
Brain Injuries - physiopathology
Brain Injuries - therapy
Cortical Spreading Depression - physiology
Critical Care - methods
Electrocorticography
Female
Humans
Male
Middle Aged
Neurophysiological Monitoring - methods
Original
Prospective Studies
title Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20current%20electrocorticography%20for%20clinical%20neuromonitoring%20of%20spreading%20depolarizations&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Hartings,%20Jed%20A&rft.date=2017-05-01&rft.volume=37&rft.issue=5&rft.spage=1857&rft.epage=1870&rft.pages=1857-1870&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1177/0271678X16653135&rft_dat=%3Cproquest_pubme%3E1826707379%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826707379&rft_id=info:pmid/27286981&rft_sage_id=10.1177_0271678X16653135&rfr_iscdi=true