Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity
ABSTRACT Aedes aegypti has 2 genes encoding xanthine dehydrogenase (XDH). We analyzed XDH1 and XDH2 gene expression by real‐time quantitative PCR in tissues from sugar‐ and blood‐fed females. Differential XDH1 and XDH2 gene expression was observed in tissues dissected throughout a time course. We ne...
Gespeichert in:
Veröffentlicht in: | The FASEB journal 2017-06, Vol.31 (6), p.2276-2286 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2286 |
---|---|
container_issue | 6 |
container_start_page | 2276 |
container_title | The FASEB journal |
container_volume | 31 |
creator | Isoe, Jun Petchampai, Natthida Isoe, Yurika E. Co, Katrina Mazzalupo, Stacy Scaraffia, Patricia Y. |
description | ABSTRACT
Aedes aegypti has 2 genes encoding xanthine dehydrogenase (XDH). We analyzed XDH1 and XDH2 gene expression by real‐time quantitative PCR in tissues from sugar‐ and blood‐fed females. Differential XDH1 and XDH2 gene expression was observed in tissues dissected throughout a time course. We next exposed females to blood meals supplemented with allopurinol, a well‐characterized XDH inhibitor. We also tested the effects of injecting double‐stranded RNA (dsRNA) against XDH1, XDH2, or both. Disruption of XDH by allopurinol or XDH1 by RNA interference significantly affected mosquito survival, causing a disruption in blood digestion, excretion, oviposition, and reproduction. XDH1‐deficient mosquitoes showed a persistence of serine proteases in the midgut at 48 h after blood feeding and a reduction in the uptake of vitellogenin by the ovaries. Surprisingly, analysis of the fat body from dsRNA‐XDH1‐injected mosquitoes fell into 2 groups: one group was characterized by a reduction of the XDH1 transcript, whereas the other group was characterized by an up‐regulation of several transcripts, including XDH1, glutamine synthetase, alanine aminotransferase, catalase, superoxide dismutase, ornithine decarboxylase, glutamate receptor, and ammonia transporter. Our data demonstrate that XDH1 plays an essential role and that XDH1 has the potential to be used as a metabolic target for Ae. aegypti vector control.—Isoe, J., Petchampai, N., Isoe, Y. E., Co, K., Mazzalupo, S., Scaraffia, P. Y. Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity. FASEB J. 31, 2276–2286 (2017). www.fasebj.org |
doi_str_mv | 10.1096/fj.201601185R |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5434658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1983929078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500R-50d2c668c38d5708cf82810ea00f679872d6fa66f2c98f303dfb52f5cbf2af0d3</originalsourceid><addsrcrecordid>eNqFkV1rFDEUhoModq1eeisBb7yZepLZZBIEoRbXDwpCVfAuZPOxm2Um2U5mqnPXnyD4D_tLzLK1Vi_0KnDOc56c5EXoMYEjApI_95sjCoQDIYKd3UEzwmqouOBwF81ASFpxXosD9CDnDQCQgt5HB1SQRs5pPUPfvug4rEN02Lr1ZPu0clFnd3X5neAcWhdNiCscIj521mWs3WraDgF3KZ-PYUiltO1Tl4ZdDy_blCz2ztkydHX5I0Q7GmextmM7BBOsbrE2Q7gIw_QQ3fO6ze7R9XmIPi9efzp5W51-ePPu5Pi0MgzgrGJgqeFcmFpY1oAwXpTlwWkAzxspGmq515x7aqTwNdTWLxn1zCw91R5sfYhe7r3bcdk5a1wcet2qbR863U8q6aD-7MSwVqt0odi8nnMmiuDZtaBP56PLg-pCNq5tdXRpzIpIQjiRlPH_o4JzLkFSKOjTv9BNGvtYfqIIRS2phGZ3d7WnTJ9y7p2_2ZuA2sWv_Eb9jr_wT24_9ob-lXcBXuyBryXb6d82tfj4ii7e39L_BJn4wLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983929078</pqid></control><display><type>article</type><title>Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Isoe, Jun ; Petchampai, Natthida ; Isoe, Yurika E. ; Co, Katrina ; Mazzalupo, Stacy ; Scaraffia, Patricia Y.</creator><creatorcontrib>Isoe, Jun ; Petchampai, Natthida ; Isoe, Yurika E. ; Co, Katrina ; Mazzalupo, Stacy ; Scaraffia, Patricia Y.</creatorcontrib><description>ABSTRACT
Aedes aegypti has 2 genes encoding xanthine dehydrogenase (XDH). We analyzed XDH1 and XDH2 gene expression by real‐time quantitative PCR in tissues from sugar‐ and blood‐fed females. Differential XDH1 and XDH2 gene expression was observed in tissues dissected throughout a time course. We next exposed females to blood meals supplemented with allopurinol, a well‐characterized XDH inhibitor. We also tested the effects of injecting double‐stranded RNA (dsRNA) against XDH1, XDH2, or both. Disruption of XDH by allopurinol or XDH1 by RNA interference significantly affected mosquito survival, causing a disruption in blood digestion, excretion, oviposition, and reproduction. XDH1‐deficient mosquitoes showed a persistence of serine proteases in the midgut at 48 h after blood feeding and a reduction in the uptake of vitellogenin by the ovaries. Surprisingly, analysis of the fat body from dsRNA‐XDH1‐injected mosquitoes fell into 2 groups: one group was characterized by a reduction of the XDH1 transcript, whereas the other group was characterized by an up‐regulation of several transcripts, including XDH1, glutamine synthetase, alanine aminotransferase, catalase, superoxide dismutase, ornithine decarboxylase, glutamate receptor, and ammonia transporter. Our data demonstrate that XDH1 plays an essential role and that XDH1 has the potential to be used as a metabolic target for Ae. aegypti vector control.—Isoe, J., Petchampai, N., Isoe, Y. E., Co, K., Mazzalupo, S., Scaraffia, P. Y. Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity. FASEB J. 31, 2276–2286 (2017). www.fasebj.org</description><identifier>ISSN: 0892-6638</identifier><identifier>EISSN: 1530-6860</identifier><identifier>DOI: 10.1096/fj.201601185R</identifier><identifier>PMID: 28179423</identifier><language>eng</language><publisher>United States: Federation of American Societies for Experimental Biology (FASEB)</publisher><subject>Aedes - enzymology ; Aedes - genetics ; Aedes aegypti ; Alanine ; Alanine transaminase ; Allopurinol ; Allopurinol - pharmacology ; Ammonia ; Animals ; antioxidant genes ; Aquatic insects ; Blood ; Blood meals ; Catalase ; Culicidae ; Dehydrogenase ; Dehydrogenases ; Double-stranded RNA ; Enzyme Inhibitors - pharmacology ; Excretion ; Fat body ; Feeding ; Female ; Females ; Gene expression ; Gene Expression Regulation, Enzymologic - physiology ; Gene Silencing ; Glutamate-ammonia ligase ; Glutamic acid receptors ; Glutamine ; Meals ; metabolic target ; Midgut ; Mosquito Control ; Mosquitoes ; Nitrogen - metabolism ; Ornithine ; Ornithine decarboxylase ; Ovaries ; Oviposition ; Oviposition - drug effects ; Ovum ; Reduction ; Ribonucleic acid ; RNA ; RNA-mediated interference ; Sucrose ; Sugar ; Superoxide dismutase ; Tissues ; Transcription ; Xanthine Dehydrogenase - classification ; Xanthine Dehydrogenase - genetics ; Xanthine Dehydrogenase - metabolism</subject><ispartof>The FASEB journal, 2017-06, Vol.31 (6), p.2276-2286</ispartof><rights>FASEB</rights><rights>FASEB.</rights><rights>Copyright Federation of American Societies for Experimental Biology (FASEB) Jun 2017</rights><rights>FASEB 2017 FASEB</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500R-50d2c668c38d5708cf82810ea00f679872d6fa66f2c98f303dfb52f5cbf2af0d3</citedby><cites>FETCH-LOGICAL-c500R-50d2c668c38d5708cf82810ea00f679872d6fa66f2c98f303dfb52f5cbf2af0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1096%2Ffj.201601185R$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1096%2Ffj.201601185R$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28179423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isoe, Jun</creatorcontrib><creatorcontrib>Petchampai, Natthida</creatorcontrib><creatorcontrib>Isoe, Yurika E.</creatorcontrib><creatorcontrib>Co, Katrina</creatorcontrib><creatorcontrib>Mazzalupo, Stacy</creatorcontrib><creatorcontrib>Scaraffia, Patricia Y.</creatorcontrib><title>Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity</title><title>The FASEB journal</title><addtitle>FASEB J</addtitle><description>ABSTRACT
Aedes aegypti has 2 genes encoding xanthine dehydrogenase (XDH). We analyzed XDH1 and XDH2 gene expression by real‐time quantitative PCR in tissues from sugar‐ and blood‐fed females. Differential XDH1 and XDH2 gene expression was observed in tissues dissected throughout a time course. We next exposed females to blood meals supplemented with allopurinol, a well‐characterized XDH inhibitor. We also tested the effects of injecting double‐stranded RNA (dsRNA) against XDH1, XDH2, or both. Disruption of XDH by allopurinol or XDH1 by RNA interference significantly affected mosquito survival, causing a disruption in blood digestion, excretion, oviposition, and reproduction. XDH1‐deficient mosquitoes showed a persistence of serine proteases in the midgut at 48 h after blood feeding and a reduction in the uptake of vitellogenin by the ovaries. Surprisingly, analysis of the fat body from dsRNA‐XDH1‐injected mosquitoes fell into 2 groups: one group was characterized by a reduction of the XDH1 transcript, whereas the other group was characterized by an up‐regulation of several transcripts, including XDH1, glutamine synthetase, alanine aminotransferase, catalase, superoxide dismutase, ornithine decarboxylase, glutamate receptor, and ammonia transporter. Our data demonstrate that XDH1 plays an essential role and that XDH1 has the potential to be used as a metabolic target for Ae. aegypti vector control.—Isoe, J., Petchampai, N., Isoe, Y. E., Co, K., Mazzalupo, S., Scaraffia, P. Y. Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity. FASEB J. 31, 2276–2286 (2017). www.fasebj.org</description><subject>Aedes - enzymology</subject><subject>Aedes - genetics</subject><subject>Aedes aegypti</subject><subject>Alanine</subject><subject>Alanine transaminase</subject><subject>Allopurinol</subject><subject>Allopurinol - pharmacology</subject><subject>Ammonia</subject><subject>Animals</subject><subject>antioxidant genes</subject><subject>Aquatic insects</subject><subject>Blood</subject><subject>Blood meals</subject><subject>Catalase</subject><subject>Culicidae</subject><subject>Dehydrogenase</subject><subject>Dehydrogenases</subject><subject>Double-stranded RNA</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Excretion</subject><subject>Fat body</subject><subject>Feeding</subject><subject>Female</subject><subject>Females</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Gene Silencing</subject><subject>Glutamate-ammonia ligase</subject><subject>Glutamic acid receptors</subject><subject>Glutamine</subject><subject>Meals</subject><subject>metabolic target</subject><subject>Midgut</subject><subject>Mosquito Control</subject><subject>Mosquitoes</subject><subject>Nitrogen - metabolism</subject><subject>Ornithine</subject><subject>Ornithine decarboxylase</subject><subject>Ovaries</subject><subject>Oviposition</subject><subject>Oviposition - drug effects</subject><subject>Ovum</subject><subject>Reduction</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-mediated interference</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Superoxide dismutase</subject><subject>Tissues</subject><subject>Transcription</subject><subject>Xanthine Dehydrogenase - classification</subject><subject>Xanthine Dehydrogenase - genetics</subject><subject>Xanthine Dehydrogenase - metabolism</subject><issn>0892-6638</issn><issn>1530-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV1rFDEUhoModq1eeisBb7yZepLZZBIEoRbXDwpCVfAuZPOxm2Um2U5mqnPXnyD4D_tLzLK1Vi_0KnDOc56c5EXoMYEjApI_95sjCoQDIYKd3UEzwmqouOBwF81ASFpxXosD9CDnDQCQgt5HB1SQRs5pPUPfvug4rEN02Lr1ZPu0clFnd3X5neAcWhdNiCscIj521mWs3WraDgF3KZ-PYUiltO1Tl4ZdDy_blCz2ztkydHX5I0Q7GmextmM7BBOsbrE2Q7gIw_QQ3fO6ze7R9XmIPi9efzp5W51-ePPu5Pi0MgzgrGJgqeFcmFpY1oAwXpTlwWkAzxspGmq515x7aqTwNdTWLxn1zCw91R5sfYhe7r3bcdk5a1wcet2qbR863U8q6aD-7MSwVqt0odi8nnMmiuDZtaBP56PLg-pCNq5tdXRpzIpIQjiRlPH_o4JzLkFSKOjTv9BNGvtYfqIIRS2phGZ3d7WnTJ9y7p2_2ZuA2sWv_Eb9jr_wT24_9ob-lXcBXuyBryXb6d82tfj4ii7e39L_BJn4wLg</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Isoe, Jun</creator><creator>Petchampai, Natthida</creator><creator>Isoe, Yurika E.</creator><creator>Co, Katrina</creator><creator>Mazzalupo, Stacy</creator><creator>Scaraffia, Patricia Y.</creator><general>Federation of American Societies for Experimental Biology (FASEB)</general><general>Federation of American Societies for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SS</scope><scope>5PM</scope></search><sort><creationdate>201706</creationdate><title>Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity</title><author>Isoe, Jun ; Petchampai, Natthida ; Isoe, Yurika E. ; Co, Katrina ; Mazzalupo, Stacy ; Scaraffia, Patricia Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500R-50d2c668c38d5708cf82810ea00f679872d6fa66f2c98f303dfb52f5cbf2af0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aedes - enzymology</topic><topic>Aedes - genetics</topic><topic>Aedes aegypti</topic><topic>Alanine</topic><topic>Alanine transaminase</topic><topic>Allopurinol</topic><topic>Allopurinol - pharmacology</topic><topic>Ammonia</topic><topic>Animals</topic><topic>antioxidant genes</topic><topic>Aquatic insects</topic><topic>Blood</topic><topic>Blood meals</topic><topic>Catalase</topic><topic>Culicidae</topic><topic>Dehydrogenase</topic><topic>Dehydrogenases</topic><topic>Double-stranded RNA</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Excretion</topic><topic>Fat body</topic><topic>Feeding</topic><topic>Female</topic><topic>Females</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Gene Silencing</topic><topic>Glutamate-ammonia ligase</topic><topic>Glutamic acid receptors</topic><topic>Glutamine</topic><topic>Meals</topic><topic>metabolic target</topic><topic>Midgut</topic><topic>Mosquito Control</topic><topic>Mosquitoes</topic><topic>Nitrogen - metabolism</topic><topic>Ornithine</topic><topic>Ornithine decarboxylase</topic><topic>Ovaries</topic><topic>Oviposition</topic><topic>Oviposition - drug effects</topic><topic>Ovum</topic><topic>Reduction</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-mediated interference</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Superoxide dismutase</topic><topic>Tissues</topic><topic>Transcription</topic><topic>Xanthine Dehydrogenase - classification</topic><topic>Xanthine Dehydrogenase - genetics</topic><topic>Xanthine Dehydrogenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isoe, Jun</creatorcontrib><creatorcontrib>Petchampai, Natthida</creatorcontrib><creatorcontrib>Isoe, Yurika E.</creatorcontrib><creatorcontrib>Co, Katrina</creatorcontrib><creatorcontrib>Mazzalupo, Stacy</creatorcontrib><creatorcontrib>Scaraffia, Patricia Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The FASEB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isoe, Jun</au><au>Petchampai, Natthida</au><au>Isoe, Yurika E.</au><au>Co, Katrina</au><au>Mazzalupo, Stacy</au><au>Scaraffia, Patricia Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity</atitle><jtitle>The FASEB journal</jtitle><addtitle>FASEB J</addtitle><date>2017-06</date><risdate>2017</risdate><volume>31</volume><issue>6</issue><spage>2276</spage><epage>2286</epage><pages>2276-2286</pages><issn>0892-6638</issn><eissn>1530-6860</eissn><abstract>ABSTRACT
Aedes aegypti has 2 genes encoding xanthine dehydrogenase (XDH). We analyzed XDH1 and XDH2 gene expression by real‐time quantitative PCR in tissues from sugar‐ and blood‐fed females. Differential XDH1 and XDH2 gene expression was observed in tissues dissected throughout a time course. We next exposed females to blood meals supplemented with allopurinol, a well‐characterized XDH inhibitor. We also tested the effects of injecting double‐stranded RNA (dsRNA) against XDH1, XDH2, or both. Disruption of XDH by allopurinol or XDH1 by RNA interference significantly affected mosquito survival, causing a disruption in blood digestion, excretion, oviposition, and reproduction. XDH1‐deficient mosquitoes showed a persistence of serine proteases in the midgut at 48 h after blood feeding and a reduction in the uptake of vitellogenin by the ovaries. Surprisingly, analysis of the fat body from dsRNA‐XDH1‐injected mosquitoes fell into 2 groups: one group was characterized by a reduction of the XDH1 transcript, whereas the other group was characterized by an up‐regulation of several transcripts, including XDH1, glutamine synthetase, alanine aminotransferase, catalase, superoxide dismutase, ornithine decarboxylase, glutamate receptor, and ammonia transporter. Our data demonstrate that XDH1 plays an essential role and that XDH1 has the potential to be used as a metabolic target for Ae. aegypti vector control.—Isoe, J., Petchampai, N., Isoe, Y. E., Co, K., Mazzalupo, S., Scaraffia, P. Y. Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity. FASEB J. 31, 2276–2286 (2017). www.fasebj.org</abstract><cop>United States</cop><pub>Federation of American Societies for Experimental Biology (FASEB)</pub><pmid>28179423</pmid><doi>10.1096/fj.201601185R</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-6638 |
ispartof | The FASEB journal, 2017-06, Vol.31 (6), p.2276-2286 |
issn | 0892-6638 1530-6860 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5434658 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Aedes - enzymology Aedes - genetics Aedes aegypti Alanine Alanine transaminase Allopurinol Allopurinol - pharmacology Ammonia Animals antioxidant genes Aquatic insects Blood Blood meals Catalase Culicidae Dehydrogenase Dehydrogenases Double-stranded RNA Enzyme Inhibitors - pharmacology Excretion Fat body Feeding Female Females Gene expression Gene Expression Regulation, Enzymologic - physiology Gene Silencing Glutamate-ammonia ligase Glutamic acid receptors Glutamine Meals metabolic target Midgut Mosquito Control Mosquitoes Nitrogen - metabolism Ornithine Ornithine decarboxylase Ovaries Oviposition Oviposition - drug effects Ovum Reduction Ribonucleic acid RNA RNA-mediated interference Sucrose Sugar Superoxide dismutase Tissues Transcription Xanthine Dehydrogenase - classification Xanthine Dehydrogenase - genetics Xanthine Dehydrogenase - metabolism |
title | Xanthine dehydrogenase‐1 silencing in Aedes aegypti mosquitoes promotes a blood feeding–induced adulticidal activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xanthine%20dehydrogenase%E2%80%901%20silencing%20in%20Aedes%20aegypti%20mosquitoes%20promotes%20a%20blood%20feeding%E2%80%93induced%20adulticidal%20activity&rft.jtitle=The%20FASEB%20journal&rft.au=Isoe,%20Jun&rft.date=2017-06&rft.volume=31&rft.issue=6&rft.spage=2276&rft.epage=2286&rft.pages=2276-2286&rft.issn=0892-6638&rft.eissn=1530-6860&rft_id=info:doi/10.1096/fj.201601185R&rft_dat=%3Cproquest_pubme%3E1983929078%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983929078&rft_id=info:pmid/28179423&rfr_iscdi=true |