A Review on Recent Computational Methods for Predicting Noncoding RNAs
Noncoding RNAs (ncRNAs) play important roles in various cellular activities and diseases. In this paper, we presented a comprehensive review on computational methods for ncRNA prediction, which are generally grouped into four categories: (1) homology-based methods, that is, comparative methods invol...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2017-01, Vol.2017 (2017), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2017 |
creator | Yang, Jialiang Fan, Jingjing Wang, Kejing Yang, Jiasheng Qiu, Jing Zhang, Dahan Huang, Haiyun Zhang, Yi Zhu, Lijuan |
description | Noncoding RNAs (ncRNAs) play important roles in various cellular activities and diseases. In this paper, we presented a comprehensive review on computational methods for ncRNA prediction, which are generally grouped into four categories: (1) homology-based methods, that is, comparative methods involving evolutionarily conserved RNA sequences and structures, (2) de novo methods using RNA sequence and structure features, (3) transcriptional sequencing and assembling based methods, that is, methods designed for single and pair-ended reads generated from next-generation RNA sequencing, and (4) RNA family specific methods, for example, methods specific for microRNAs and long noncoding RNAs. In the end, we summarized the advantages and limitations of these methods and pointed out a few possible future directions for ncRNA prediction. In conclusion, many computational methods have been demonstrated to be effective in predicting ncRNAs for further experimental validation. They are critical in reducing the huge number of potential ncRNAs and pointing the community to high confidence candidates. In the future, high efficient mapping technology and more intrinsic sequence features (e.g., motif and k-mer frequencies) and structure features (e.g., minimum free energy, conserved stem-loop, or graph structures) are suggested to be combined with the next- and third-generation sequencing platforms to improve ncRNA prediction. |
doi_str_mv | 10.1155/2017/9139504 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5434267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557303054</galeid><sourcerecordid>A557303054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-9701a645a168212a434749edae96e2094b2ab9cb453c5cdc4ab8f97d59ac22963</originalsourceid><addsrcrecordid>eNqNkUtrGzEUhUVoSIKTXddloJtC40RXrxltCsY0aSEvQrsWGo3GVhhLrjSTkH8fDXadtKtoowP6OOdeHYQ-Aj4D4PycYCjPJVDJMdtDR4QCmwpg8GGnKT1EJyk94HwqEFiKA3RIKs6p4HCELmbFvX109qkIPitjfV_Mw2o99Lp3weuuuLb9MjSpaEMs7qJtnOmdXxQ3wZvQjOr-ZpaO0X6ru2RPtvcE_b74_mv-Y3p1e_lzPruaGiZlP5UlBi0Y1yAqAkQzykombaOtFJZgyWqia2lqxqnhpjFM11Ury4ZLbQiRgk7Qt43veqhXthnHjbpT6-hWOj6roJ3698W7pVqER8VzFBFlNviyNYjhz2BTr1YuGdt12tswJAUSU0ZLzklGP_-HPoQh5i_JVCUrAVBSeKUWurPK-TbkXDOaqhnnJcUU5-wJOt1QJoaUom13IwNWY5NqbFJtm8z4p7dr7uC_vWXg6wZYOt_oJ_dOO5sZ2-pXOgM0270AXESs1w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898611731</pqid></control><display><type>article</type><title>A Review on Recent Computational Methods for Predicting Noncoding RNAs</title><source>MEDLINE</source><source>Wiley Online Library</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Yang, Jialiang ; Fan, Jingjing ; Wang, Kejing ; Yang, Jiasheng ; Qiu, Jing ; Zhang, Dahan ; Huang, Haiyun ; Zhang, Yi ; Zhu, Lijuan</creator><contributor>Picardi, Ernesto</contributor><creatorcontrib>Yang, Jialiang ; Fan, Jingjing ; Wang, Kejing ; Yang, Jiasheng ; Qiu, Jing ; Zhang, Dahan ; Huang, Haiyun ; Zhang, Yi ; Zhu, Lijuan ; Picardi, Ernesto</creatorcontrib><description>Noncoding RNAs (ncRNAs) play important roles in various cellular activities and diseases. In this paper, we presented a comprehensive review on computational methods for ncRNA prediction, which are generally grouped into four categories: (1) homology-based methods, that is, comparative methods involving evolutionarily conserved RNA sequences and structures, (2) de novo methods using RNA sequence and structure features, (3) transcriptional sequencing and assembling based methods, that is, methods designed for single and pair-ended reads generated from next-generation RNA sequencing, and (4) RNA family specific methods, for example, methods specific for microRNAs and long noncoding RNAs. In the end, we summarized the advantages and limitations of these methods and pointed out a few possible future directions for ncRNA prediction. In conclusion, many computational methods have been demonstrated to be effective in predicting ncRNAs for further experimental validation. They are critical in reducing the huge number of potential ncRNAs and pointing the community to high confidence candidates. In the future, high efficient mapping technology and more intrinsic sequence features (e.g., motif and k-mer frequencies) and structure features (e.g., minimum free energy, conserved stem-loop, or graph structures) are suggested to be combined with the next- and third-generation sequencing platforms to improve ncRNA prediction.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2017/9139504</identifier><identifier>PMID: 28553651</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Bioinformatics ; Computer simulation ; Computer-generated environments ; Diabetes ; Evolution ; Expected values ; Experimental methods ; Gene expression ; High-Throughput Nucleotide Sequencing - methods ; High-Throughput Nucleotide Sequencing - trends ; Information science ; Methods ; MicroRNAs ; MicroRNAs - chemistry ; MicroRNAs - genetics ; Nucleic Acid Conformation ; Research methodology ; Review ; RNA ; RNA sequencing ; RNA, Long Noncoding - chemistry ; RNA, Long Noncoding - genetics ; Science ; Sequence Analysis, RNA - methods ; Sequence Analysis, RNA - trends ; Software</subject><ispartof>BioMed research international, 2017-01, Vol.2017 (2017), p.1-14</ispartof><rights>Copyright © 2017 Yi Zhang et al.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 Yi Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2017 Yi Zhang et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-9701a645a168212a434749edae96e2094b2ab9cb453c5cdc4ab8f97d59ac22963</citedby><cites>FETCH-LOGICAL-c499t-9701a645a168212a434749edae96e2094b2ab9cb453c5cdc4ab8f97d59ac22963</cites><orcidid>0000-0003-4689-8672 ; 0000-0002-4057-678X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434267/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434267/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28553651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Picardi, Ernesto</contributor><creatorcontrib>Yang, Jialiang</creatorcontrib><creatorcontrib>Fan, Jingjing</creatorcontrib><creatorcontrib>Wang, Kejing</creatorcontrib><creatorcontrib>Yang, Jiasheng</creatorcontrib><creatorcontrib>Qiu, Jing</creatorcontrib><creatorcontrib>Zhang, Dahan</creatorcontrib><creatorcontrib>Huang, Haiyun</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhu, Lijuan</creatorcontrib><title>A Review on Recent Computational Methods for Predicting Noncoding RNAs</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Noncoding RNAs (ncRNAs) play important roles in various cellular activities and diseases. In this paper, we presented a comprehensive review on computational methods for ncRNA prediction, which are generally grouped into four categories: (1) homology-based methods, that is, comparative methods involving evolutionarily conserved RNA sequences and structures, (2) de novo methods using RNA sequence and structure features, (3) transcriptional sequencing and assembling based methods, that is, methods designed for single and pair-ended reads generated from next-generation RNA sequencing, and (4) RNA family specific methods, for example, methods specific for microRNAs and long noncoding RNAs. In the end, we summarized the advantages and limitations of these methods and pointed out a few possible future directions for ncRNA prediction. In conclusion, many computational methods have been demonstrated to be effective in predicting ncRNAs for further experimental validation. They are critical in reducing the huge number of potential ncRNAs and pointing the community to high confidence candidates. In the future, high efficient mapping technology and more intrinsic sequence features (e.g., motif and k-mer frequencies) and structure features (e.g., minimum free energy, conserved stem-loop, or graph structures) are suggested to be combined with the next- and third-generation sequencing platforms to improve ncRNA prediction.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Diabetes</subject><subject>Evolution</subject><subject>Expected values</subject><subject>Experimental methods</subject><subject>Gene expression</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>High-Throughput Nucleotide Sequencing - trends</subject><subject>Information science</subject><subject>Methods</subject><subject>MicroRNAs</subject><subject>MicroRNAs - chemistry</subject><subject>MicroRNAs - genetics</subject><subject>Nucleic Acid Conformation</subject><subject>Research methodology</subject><subject>Review</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>RNA, Long Noncoding - chemistry</subject><subject>RNA, Long Noncoding - genetics</subject><subject>Science</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Sequence Analysis, RNA - trends</subject><subject>Software</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtrGzEUhUVoSIKTXddloJtC40RXrxltCsY0aSEvQrsWGo3GVhhLrjSTkH8fDXadtKtoowP6OOdeHYQ-Aj4D4PycYCjPJVDJMdtDR4QCmwpg8GGnKT1EJyk94HwqEFiKA3RIKs6p4HCELmbFvX109qkIPitjfV_Mw2o99Lp3weuuuLb9MjSpaEMs7qJtnOmdXxQ3wZvQjOr-ZpaO0X6ru2RPtvcE_b74_mv-Y3p1e_lzPruaGiZlP5UlBi0Y1yAqAkQzykombaOtFJZgyWqia2lqxqnhpjFM11Ury4ZLbQiRgk7Qt43veqhXthnHjbpT6-hWOj6roJ3698W7pVqER8VzFBFlNviyNYjhz2BTr1YuGdt12tswJAUSU0ZLzklGP_-HPoQh5i_JVCUrAVBSeKUWurPK-TbkXDOaqhnnJcUU5-wJOt1QJoaUom13IwNWY5NqbFJtm8z4p7dr7uC_vWXg6wZYOt_oJ_dOO5sZ2-pXOgM0270AXESs1w</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Yang, Jialiang</creator><creator>Fan, Jingjing</creator><creator>Wang, Kejing</creator><creator>Yang, Jiasheng</creator><creator>Qiu, Jing</creator><creator>Zhang, Dahan</creator><creator>Huang, Haiyun</creator><creator>Zhang, Yi</creator><creator>Zhu, Lijuan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4689-8672</orcidid><orcidid>https://orcid.org/0000-0002-4057-678X</orcidid></search><sort><creationdate>20170101</creationdate><title>A Review on Recent Computational Methods for Predicting Noncoding RNAs</title><author>Yang, Jialiang ; Fan, Jingjing ; Wang, Kejing ; Yang, Jiasheng ; Qiu, Jing ; Zhang, Dahan ; Huang, Haiyun ; Zhang, Yi ; Zhu, Lijuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-9701a645a168212a434749edae96e2094b2ab9cb453c5cdc4ab8f97d59ac22963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Diabetes</topic><topic>Evolution</topic><topic>Expected values</topic><topic>Experimental methods</topic><topic>Gene expression</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>High-Throughput Nucleotide Sequencing - trends</topic><topic>Information science</topic><topic>Methods</topic><topic>MicroRNAs</topic><topic>MicroRNAs - chemistry</topic><topic>MicroRNAs - genetics</topic><topic>Nucleic Acid Conformation</topic><topic>Research methodology</topic><topic>Review</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>RNA, Long Noncoding - chemistry</topic><topic>RNA, Long Noncoding - genetics</topic><topic>Science</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Sequence Analysis, RNA - trends</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jialiang</creatorcontrib><creatorcontrib>Fan, Jingjing</creatorcontrib><creatorcontrib>Wang, Kejing</creatorcontrib><creatorcontrib>Yang, Jiasheng</creatorcontrib><creatorcontrib>Qiu, Jing</creatorcontrib><creatorcontrib>Zhang, Dahan</creatorcontrib><creatorcontrib>Huang, Haiyun</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhu, Lijuan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jialiang</au><au>Fan, Jingjing</au><au>Wang, Kejing</au><au>Yang, Jiasheng</au><au>Qiu, Jing</au><au>Zhang, Dahan</au><au>Huang, Haiyun</au><au>Zhang, Yi</au><au>Zhu, Lijuan</au><au>Picardi, Ernesto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review on Recent Computational Methods for Predicting Noncoding RNAs</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Noncoding RNAs (ncRNAs) play important roles in various cellular activities and diseases. In this paper, we presented a comprehensive review on computational methods for ncRNA prediction, which are generally grouped into four categories: (1) homology-based methods, that is, comparative methods involving evolutionarily conserved RNA sequences and structures, (2) de novo methods using RNA sequence and structure features, (3) transcriptional sequencing and assembling based methods, that is, methods designed for single and pair-ended reads generated from next-generation RNA sequencing, and (4) RNA family specific methods, for example, methods specific for microRNAs and long noncoding RNAs. In the end, we summarized the advantages and limitations of these methods and pointed out a few possible future directions for ncRNA prediction. In conclusion, many computational methods have been demonstrated to be effective in predicting ncRNAs for further experimental validation. They are critical in reducing the huge number of potential ncRNAs and pointing the community to high confidence candidates. In the future, high efficient mapping technology and more intrinsic sequence features (e.g., motif and k-mer frequencies) and structure features (e.g., minimum free energy, conserved stem-loop, or graph structures) are suggested to be combined with the next- and third-generation sequencing platforms to improve ncRNA prediction.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>28553651</pmid><doi>10.1155/2017/9139504</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4689-8672</orcidid><orcidid>https://orcid.org/0000-0002-4057-678X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2017-01, Vol.2017 (2017), p.1-14 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5434267 |
source | MEDLINE; Wiley Online Library; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Algorithms Bioinformatics Computer simulation Computer-generated environments Diabetes Evolution Expected values Experimental methods Gene expression High-Throughput Nucleotide Sequencing - methods High-Throughput Nucleotide Sequencing - trends Information science Methods MicroRNAs MicroRNAs - chemistry MicroRNAs - genetics Nucleic Acid Conformation Research methodology Review RNA RNA sequencing RNA, Long Noncoding - chemistry RNA, Long Noncoding - genetics Science Sequence Analysis, RNA - methods Sequence Analysis, RNA - trends Software |
title | A Review on Recent Computational Methods for Predicting Noncoding RNAs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20on%20Recent%20Computational%20Methods%20for%20Predicting%20Noncoding%20RNAs&rft.jtitle=BioMed%20research%20international&rft.au=Yang,%20Jialiang&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2017/9139504&rft_dat=%3Cgale_pubme%3EA557303054%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898611731&rft_id=info:pmid/28553651&rft_galeid=A557303054&rfr_iscdi=true |