A practical guide to studying G-quadruplex structures using single-molecule FRET

In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2017-06, Vol.292 (3), p.483-498
Hauptverfasser: Maleki, Parastoo, Budhathoki, Jagat B., Roy, William A., Balci, Hamza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue 3
container_start_page 483
container_title Molecular genetics and genomics : MGG
container_volume 292
creator Maleki, Parastoo
Budhathoki, Jagat B.
Roy, William A.
Balci, Hamza
description In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ. The annealing and storage conditions, the location of fluorophores on the DNA construct, and the ionic conditions of the experiment are some of the factors that are of critical importance for the outcome of measurements, and many of these manifest themselves in unique ways in smFRET assays. By reviewing these aspects and providing a summary of best practices, we aim to provide a practical guide that will help in successfully designing and performing smFRET studies on GQ structures.
doi_str_mv 10.1007/s00438-017-1288-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5429881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899718113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-5f86187b3a35e536176ba85b4ac4e0413957972116fc30b836a4f7c9e761615a3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVJaD7aH9BLMeTSi1uNZH34UgjLJiksNITkLGTteOOgtTeSFbL_vjK7XZJCL5Jm5plXM7yEfAH6HShVPyKlFdclBVUC07pkH8gpyBxVkvGjwxvECTmL8YlmUDL1kZwwDSL30lNye1lsgnVj56wvVqlbYjEORRzTctv1q-K6fE52GdLG42vOhuTGFDAWKU7V6fBYrgePLnksru7m95_IcWt9xM_7-5w8XM3vZzfl4vf1r9nlonSCy7EUrZagVcMtF5gzebLGatFU1lVIK-C1ULViALJ1nDaaS1u1ytWoZN5KWH5Ofu50N6lZ49JhPwbrzSZ0axu2ZrCdeV_pu0ezGl6MqFitNWSBb3uBMDwnjKNZd9Gh97bHIUUDWgrBKyYn9OIf9GlIoc_rZaquFWgAninYUS4MMQZsD8MANZNfZueXyTaYyS_Dcs_Xt1scOv4alAG2A2Iu9SsMb77-r-ofQK2fwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899718113</pqid></control><display><type>article</type><title>A practical guide to studying G-quadruplex structures using single-molecule FRET</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Maleki, Parastoo ; Budhathoki, Jagat B. ; Roy, William A. ; Balci, Hamza</creator><creatorcontrib>Maleki, Parastoo ; Budhathoki, Jagat B. ; Roy, William A. ; Balci, Hamza</creatorcontrib><description>In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ. The annealing and storage conditions, the location of fluorophores on the DNA construct, and the ionic conditions of the experiment are some of the factors that are of critical importance for the outcome of measurements, and many of these manifest themselves in unique ways in smFRET assays. By reviewing these aspects and providing a summary of best practices, we aim to provide a practical guide that will help in successfully designing and performing smFRET studies on GQ structures.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-017-1288-2</identifier><identifier>PMID: 28150040</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Genetics and Genomics ; Biochemistry ; Biomedical and Life Sciences ; DNA - genetics ; Fluorescence ; Fluorescence Resonance Energy Transfer - methods ; G-Quadruplexes ; Human Genetics ; Life Sciences ; Microbial Genetics and Genomics ; Plant Genetics and Genomics ; Promoter Regions, Genetic - genetics ; Review ; Telomere - genetics</subject><ispartof>Molecular genetics and genomics : MGG, 2017-06, Vol.292 (3), p.483-498</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Molecular Genetics and Genomics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-5f86187b3a35e536176ba85b4ac4e0413957972116fc30b836a4f7c9e761615a3</citedby><cites>FETCH-LOGICAL-c536t-5f86187b3a35e536176ba85b4ac4e0413957972116fc30b836a4f7c9e761615a3</cites><orcidid>0000-0002-0273-4871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-017-1288-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-017-1288-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28150040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maleki, Parastoo</creatorcontrib><creatorcontrib>Budhathoki, Jagat B.</creatorcontrib><creatorcontrib>Roy, William A.</creatorcontrib><creatorcontrib>Balci, Hamza</creatorcontrib><title>A practical guide to studying G-quadruplex structures using single-molecule FRET</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ. The annealing and storage conditions, the location of fluorophores on the DNA construct, and the ionic conditions of the experiment are some of the factors that are of critical importance for the outcome of measurements, and many of these manifest themselves in unique ways in smFRET assays. By reviewing these aspects and providing a summary of best practices, we aim to provide a practical guide that will help in successfully designing and performing smFRET studies on GQ structures.</description><subject>Animal Genetics and Genomics</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>DNA - genetics</subject><subject>Fluorescence</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>G-Quadruplexes</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Plant Genetics and Genomics</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Review</subject><subject>Telomere - genetics</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r3DAQhkVJaD7aH9BLMeTSi1uNZH34UgjLJiksNITkLGTteOOgtTeSFbL_vjK7XZJCL5Jm5plXM7yEfAH6HShVPyKlFdclBVUC07pkH8gpyBxVkvGjwxvECTmL8YlmUDL1kZwwDSL30lNye1lsgnVj56wvVqlbYjEORRzTctv1q-K6fE52GdLG42vOhuTGFDAWKU7V6fBYrgePLnksru7m95_IcWt9xM_7-5w8XM3vZzfl4vf1r9nlonSCy7EUrZagVcMtF5gzebLGatFU1lVIK-C1ULViALJ1nDaaS1u1ytWoZN5KWH5Ofu50N6lZ49JhPwbrzSZ0axu2ZrCdeV_pu0ezGl6MqFitNWSBb3uBMDwnjKNZd9Gh97bHIUUDWgrBKyYn9OIf9GlIoc_rZaquFWgAninYUS4MMQZsD8MANZNfZueXyTaYyS_Dcs_Xt1scOv4alAG2A2Iu9SsMb77-r-ofQK2fwQ</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Maleki, Parastoo</creator><creator>Budhathoki, Jagat B.</creator><creator>Roy, William A.</creator><creator>Balci, Hamza</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0273-4871</orcidid></search><sort><creationdate>20170601</creationdate><title>A practical guide to studying G-quadruplex structures using single-molecule FRET</title><author>Maleki, Parastoo ; Budhathoki, Jagat B. ; Roy, William A. ; Balci, Hamza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-5f86187b3a35e536176ba85b4ac4e0413957972116fc30b836a4f7c9e761615a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal Genetics and Genomics</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>DNA - genetics</topic><topic>Fluorescence</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>G-Quadruplexes</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Plant Genetics and Genomics</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Review</topic><topic>Telomere - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maleki, Parastoo</creatorcontrib><creatorcontrib>Budhathoki, Jagat B.</creatorcontrib><creatorcontrib>Roy, William A.</creatorcontrib><creatorcontrib>Balci, Hamza</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maleki, Parastoo</au><au>Budhathoki, Jagat B.</au><au>Roy, William A.</au><au>Balci, Hamza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A practical guide to studying G-quadruplex structures using single-molecule FRET</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>292</volume><issue>3</issue><spage>483</spage><epage>498</epage><pages>483-498</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>In this article, we summarize the knowledge and best practices learned from bulk and single-molecule measurements to address some of the frequently experienced difficulties in single-molecule Förster resonance energy transfer (smFRET) measurements on G-quadruplex (GQ) structures. The number of studies that use smFRET to investigate the structure, function, dynamics, and interactions of GQ structures has grown significantly in the last few years, with new applications already in sight. However, a number of challenges need to be overcome before reliable and reproducible smFRET data can be obtained in measurements that include GQ. The annealing and storage conditions, the location of fluorophores on the DNA construct, and the ionic conditions of the experiment are some of the factors that are of critical importance for the outcome of measurements, and many of these manifest themselves in unique ways in smFRET assays. By reviewing these aspects and providing a summary of best practices, we aim to provide a practical guide that will help in successfully designing and performing smFRET studies on GQ structures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28150040</pmid><doi>10.1007/s00438-017-1288-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0273-4871</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1617-4615
ispartof Molecular genetics and genomics : MGG, 2017-06, Vol.292 (3), p.483-498
issn 1617-4615
1617-4623
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5429881
source MEDLINE; SpringerLink Journals
subjects Animal Genetics and Genomics
Biochemistry
Biomedical and Life Sciences
DNA - genetics
Fluorescence
Fluorescence Resonance Energy Transfer - methods
G-Quadruplexes
Human Genetics
Life Sciences
Microbial Genetics and Genomics
Plant Genetics and Genomics
Promoter Regions, Genetic - genetics
Review
Telomere - genetics
title A practical guide to studying G-quadruplex structures using single-molecule FRET
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20practical%20guide%20to%20studying%20G-quadruplex%20structures%20using%20single-molecule%20FRET&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Maleki,%20Parastoo&rft.date=2017-06-01&rft.volume=292&rft.issue=3&rft.spage=483&rft.epage=498&rft.pages=483-498&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-017-1288-2&rft_dat=%3Cproquest_pubme%3E1899718113%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899718113&rft_id=info:pmid/28150040&rfr_iscdi=true