Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components

Immobilized Candida tropicalis cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:3 Biotech 2017-05, Vol.7 (1), p.68-9, Article 68
Hauptverfasser: Yewale, Tatyaso, Panchwagh, Shruti, Sawale, Shaileshkumar, Jain, Rishi, Dhamole, Pradip B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 68
container_title 3 Biotech
container_volume 7
creator Yewale, Tatyaso
Panchwagh, Shruti
Sawale, Shaileshkumar
Jain, Rishi
Dhamole, Pradip B.
description Immobilized Candida tropicalis cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KH 2 PO 4 and initial pH were identified as significant variables by Plackett–Burman (PB) design. Significant medium components were optimized by response surface methodology (RSM). Predicted xylitol yield by RSM model and experimental yield was 0.87 and 0.79 g/g, respectively. Optimized conditions (urea 1.5 g/L, KH 2 PO 4 1.9 g/L, xylose 55 g/L, pH 6.7) enhanced xylitol yield by 32% and xylose consumption by twofold over those of basal media. In addition, the immobilized cells were reused five times at shake flask level with optimized medium without affecting the xylitol productivity and yield. Xylitol production was successfully scaled up to 7.5 L stirred tank reactor using optimized media. Thus, the optimized condition with non-detoxified pentose hydrolysate from corn cob lignocellulosic waste with minimal nutrients without any sterilization opens up the scope for commercialization of the process.
doi_str_mv 10.1007/s13205-017-0700-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5428108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893554094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-4ce60e1dd58ad369e4b74ba48db0d7601c66ed7362505ca01e1562166a5af7ad3</originalsourceid><addsrcrecordid>eNp1kcFrFDEUxgex2NL2D_AiAS9eRl8yk2TmIkjRKhS8VOgtZJPMNiWTtyYZdQ_-72a7dalCc0nI-73vvY-vaV5SeEsB5LtMOwa8BSpbkAAte9acMDpCy2U3PD-82c1xc57zHdTDKR8pvGiO2dBzBoydNL9vtsEXDGST0C6meIxkSjiTiLG1ruAvP3lniY72_isXl3xwJPh1RONCWAJmb8jt1iYM26yLI0v2cU0C_mwN5kJ8tEsuyetAZme9JgbnDUYXSz5rjiYdsjt_uE-bb58-Xl98bq--Xn65-HDVml5CaXvjBDhqLR-07cTo-pXsV7of7AqsFECNEM7KTjAO3GigjnLBqBCa60nWltPm_V53s6zqDqbOTjqoTfKzTluF2qt_K9HfqjX-ULxnA4WhCrx5EEj4fXG5qNnnnX0dHS5Z0WHsOO9h7Cv6-j_0DpcUqz1FR97RAcaRVYruKZMw5-SmwzIU1C5ftc9X1XzVLl-163n12MWh42-aFWB7INdSXLv0aPSTqn8AZoa0Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953180992</pqid></control><display><type>article</type><title>Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yewale, Tatyaso ; Panchwagh, Shruti ; Sawale, Shaileshkumar ; Jain, Rishi ; Dhamole, Pradip B.</creator><creatorcontrib>Yewale, Tatyaso ; Panchwagh, Shruti ; Sawale, Shaileshkumar ; Jain, Rishi ; Dhamole, Pradip B.</creatorcontrib><description>Immobilized Candida tropicalis cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KH 2 PO 4 and initial pH were identified as significant variables by Plackett–Burman (PB) design. Significant medium components were optimized by response surface methodology (RSM). Predicted xylitol yield by RSM model and experimental yield was 0.87 and 0.79 g/g, respectively. Optimized conditions (urea 1.5 g/L, KH 2 PO 4 1.9 g/L, xylose 55 g/L, pH 6.7) enhanced xylitol yield by 32% and xylose consumption by twofold over those of basal media. In addition, the immobilized cells were reused five times at shake flask level with optimized medium without affecting the xylitol productivity and yield. Xylitol production was successfully scaled up to 7.5 L stirred tank reactor using optimized media. Thus, the optimized condition with non-detoxified pentose hydrolysate from corn cob lignocellulosic waste with minimal nutrients without any sterilization opens up the scope for commercialization of the process.</description><identifier>ISSN: 2190-572X</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-017-0700-2</identifier><identifier>PMID: 28452022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alginic acid ; Beads ; Bioinformatics ; Biomaterials ; Biotechnology ; Calcium alginate ; Cancer Research ; Chemistry ; Chemistry and Materials Science ; Commercialization ; Corn ; Design optimization ; Detoxification ; Fermentation ; Freeze drying ; Identification methods ; Immobilized cells ; Lignocellulose ; Media ; Nutrients ; Original ; Original Article ; Pentose ; pH effects ; Response surface methodology ; Statistical methods ; Stem Cells ; Sterilization ; Urea ; Xylitol ; Xylose ; Zea mays</subject><ispartof>3 Biotech, 2017-05, Vol.7 (1), p.68-9, Article 68</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>3 Biotech is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-4ce60e1dd58ad369e4b74ba48db0d7601c66ed7362505ca01e1562166a5af7ad3</citedby><cites>FETCH-LOGICAL-c470t-4ce60e1dd58ad369e4b74ba48db0d7601c66ed7362505ca01e1562166a5af7ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428108/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428108/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41487,42556,51318,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28452022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yewale, Tatyaso</creatorcontrib><creatorcontrib>Panchwagh, Shruti</creatorcontrib><creatorcontrib>Sawale, Shaileshkumar</creatorcontrib><creatorcontrib>Jain, Rishi</creatorcontrib><creatorcontrib>Dhamole, Pradip B.</creatorcontrib><title>Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>Immobilized Candida tropicalis cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KH 2 PO 4 and initial pH were identified as significant variables by Plackett–Burman (PB) design. Significant medium components were optimized by response surface methodology (RSM). Predicted xylitol yield by RSM model and experimental yield was 0.87 and 0.79 g/g, respectively. Optimized conditions (urea 1.5 g/L, KH 2 PO 4 1.9 g/L, xylose 55 g/L, pH 6.7) enhanced xylitol yield by 32% and xylose consumption by twofold over those of basal media. In addition, the immobilized cells were reused five times at shake flask level with optimized medium without affecting the xylitol productivity and yield. Xylitol production was successfully scaled up to 7.5 L stirred tank reactor using optimized media. Thus, the optimized condition with non-detoxified pentose hydrolysate from corn cob lignocellulosic waste with minimal nutrients without any sterilization opens up the scope for commercialization of the process.</description><subject>Agriculture</subject><subject>Alginic acid</subject><subject>Beads</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Calcium alginate</subject><subject>Cancer Research</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Commercialization</subject><subject>Corn</subject><subject>Design optimization</subject><subject>Detoxification</subject><subject>Fermentation</subject><subject>Freeze drying</subject><subject>Identification methods</subject><subject>Immobilized cells</subject><subject>Lignocellulose</subject><subject>Media</subject><subject>Nutrients</subject><subject>Original</subject><subject>Original Article</subject><subject>Pentose</subject><subject>pH effects</subject><subject>Response surface methodology</subject><subject>Statistical methods</subject><subject>Stem Cells</subject><subject>Sterilization</subject><subject>Urea</subject><subject>Xylitol</subject><subject>Xylose</subject><subject>Zea mays</subject><issn>2190-572X</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFrFDEUxgex2NL2D_AiAS9eRl8yk2TmIkjRKhS8VOgtZJPMNiWTtyYZdQ_-72a7dalCc0nI-73vvY-vaV5SeEsB5LtMOwa8BSpbkAAte9acMDpCy2U3PD-82c1xc57zHdTDKR8pvGiO2dBzBoydNL9vtsEXDGST0C6meIxkSjiTiLG1ruAvP3lniY72_isXl3xwJPh1RONCWAJmb8jt1iYM26yLI0v2cU0C_mwN5kJ8tEsuyetAZme9JgbnDUYXSz5rjiYdsjt_uE-bb58-Xl98bq--Xn65-HDVml5CaXvjBDhqLR-07cTo-pXsV7of7AqsFECNEM7KTjAO3GigjnLBqBCa60nWltPm_V53s6zqDqbOTjqoTfKzTluF2qt_K9HfqjX-ULxnA4WhCrx5EEj4fXG5qNnnnX0dHS5Z0WHsOO9h7Cv6-j_0DpcUqz1FR97RAcaRVYruKZMw5-SmwzIU1C5ftc9X1XzVLl-163n12MWh42-aFWB7INdSXLv0aPSTqn8AZoa0Rw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Yewale, Tatyaso</creator><creator>Panchwagh, Shruti</creator><creator>Sawale, Shaileshkumar</creator><creator>Jain, Rishi</creator><creator>Dhamole, Pradip B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170501</creationdate><title>Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components</title><author>Yewale, Tatyaso ; Panchwagh, Shruti ; Sawale, Shaileshkumar ; Jain, Rishi ; Dhamole, Pradip B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-4ce60e1dd58ad369e4b74ba48db0d7601c66ed7362505ca01e1562166a5af7ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Alginic acid</topic><topic>Beads</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Calcium alginate</topic><topic>Cancer Research</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Commercialization</topic><topic>Corn</topic><topic>Design optimization</topic><topic>Detoxification</topic><topic>Fermentation</topic><topic>Freeze drying</topic><topic>Identification methods</topic><topic>Immobilized cells</topic><topic>Lignocellulose</topic><topic>Media</topic><topic>Nutrients</topic><topic>Original</topic><topic>Original Article</topic><topic>Pentose</topic><topic>pH effects</topic><topic>Response surface methodology</topic><topic>Statistical methods</topic><topic>Stem Cells</topic><topic>Sterilization</topic><topic>Urea</topic><topic>Xylitol</topic><topic>Xylose</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yewale, Tatyaso</creatorcontrib><creatorcontrib>Panchwagh, Shruti</creatorcontrib><creatorcontrib>Sawale, Shaileshkumar</creatorcontrib><creatorcontrib>Jain, Rishi</creatorcontrib><creatorcontrib>Dhamole, Pradip B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yewale, Tatyaso</au><au>Panchwagh, Shruti</au><au>Sawale, Shaileshkumar</au><au>Jain, Rishi</au><au>Dhamole, Pradip B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>68</spage><epage>9</epage><pages>68-9</pages><artnum>68</artnum><issn>2190-572X</issn><eissn>2190-5738</eissn><abstract>Immobilized Candida tropicalis cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KH 2 PO 4 and initial pH were identified as significant variables by Plackett–Burman (PB) design. Significant medium components were optimized by response surface methodology (RSM). Predicted xylitol yield by RSM model and experimental yield was 0.87 and 0.79 g/g, respectively. Optimized conditions (urea 1.5 g/L, KH 2 PO 4 1.9 g/L, xylose 55 g/L, pH 6.7) enhanced xylitol yield by 32% and xylose consumption by twofold over those of basal media. In addition, the immobilized cells were reused five times at shake flask level with optimized medium without affecting the xylitol productivity and yield. Xylitol production was successfully scaled up to 7.5 L stirred tank reactor using optimized media. Thus, the optimized condition with non-detoxified pentose hydrolysate from corn cob lignocellulosic waste with minimal nutrients without any sterilization opens up the scope for commercialization of the process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28452022</pmid><doi>10.1007/s13205-017-0700-2</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-572X
ispartof 3 Biotech, 2017-05, Vol.7 (1), p.68-9, Article 68
issn 2190-572X
2190-5738
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5428108
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Agriculture
Alginic acid
Beads
Bioinformatics
Biomaterials
Biotechnology
Calcium alginate
Cancer Research
Chemistry
Chemistry and Materials Science
Commercialization
Corn
Design optimization
Detoxification
Fermentation
Freeze drying
Identification methods
Immobilized cells
Lignocellulose
Media
Nutrients
Original
Original Article
Pentose
pH effects
Response surface methodology
Statistical methods
Stem Cells
Sterilization
Urea
Xylitol
Xylose
Zea mays
title Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xylitol%20production%20from%20non-detoxified%20and%20non-sterile%20lignocellulosic%20hydrolysate%20using%20low-cost%20industrial%20media%20components&rft.jtitle=3%20Biotech&rft.au=Yewale,%20Tatyaso&rft.date=2017-05-01&rft.volume=7&rft.issue=1&rft.spage=68&rft.epage=9&rft.pages=68-9&rft.artnum=68&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-017-0700-2&rft_dat=%3Cproquest_pubme%3E1893554094%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953180992&rft_id=info:pmid/28452022&rfr_iscdi=true