Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components
Immobilized Candida tropicalis cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods....
Gespeichert in:
Veröffentlicht in: | 3 Biotech 2017-05, Vol.7 (1), p.68-9, Article 68 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 68 |
container_title | 3 Biotech |
container_volume | 7 |
creator | Yewale, Tatyaso Panchwagh, Shruti Sawale, Shaileshkumar Jain, Rishi Dhamole, Pradip B. |
description | Immobilized
Candida tropicalis
cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KH
2
PO
4
and initial pH were identified as significant variables by Plackett–Burman (PB) design. Significant medium components were optimized by response surface methodology (RSM). Predicted xylitol yield by RSM model and experimental yield was 0.87 and 0.79 g/g, respectively. Optimized conditions (urea 1.5 g/L, KH
2
PO
4
1.9 g/L, xylose 55 g/L, pH 6.7) enhanced xylitol yield by 32% and xylose consumption by twofold over those of basal media. In addition, the immobilized cells were reused five times at shake flask level with optimized medium without affecting the xylitol productivity and yield. Xylitol production was successfully scaled up to 7.5 L stirred tank reactor using optimized media. Thus, the optimized condition with non-detoxified pentose hydrolysate from corn cob lignocellulosic waste with minimal nutrients without any sterilization opens up the scope for commercialization of the process. |
doi_str_mv | 10.1007/s13205-017-0700-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5428108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893554094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-4ce60e1dd58ad369e4b74ba48db0d7601c66ed7362505ca01e1562166a5af7ad3</originalsourceid><addsrcrecordid>eNp1kcFrFDEUxgex2NL2D_AiAS9eRl8yk2TmIkjRKhS8VOgtZJPMNiWTtyYZdQ_-72a7dalCc0nI-73vvY-vaV5SeEsB5LtMOwa8BSpbkAAte9acMDpCy2U3PD-82c1xc57zHdTDKR8pvGiO2dBzBoydNL9vtsEXDGST0C6meIxkSjiTiLG1ruAvP3lniY72_isXl3xwJPh1RONCWAJmb8jt1iYM26yLI0v2cU0C_mwN5kJ8tEsuyetAZme9JgbnDUYXSz5rjiYdsjt_uE-bb58-Xl98bq--Xn65-HDVml5CaXvjBDhqLR-07cTo-pXsV7of7AqsFECNEM7KTjAO3GigjnLBqBCa60nWltPm_V53s6zqDqbOTjqoTfKzTluF2qt_K9HfqjX-ULxnA4WhCrx5EEj4fXG5qNnnnX0dHS5Z0WHsOO9h7Cv6-j_0DpcUqz1FR97RAcaRVYruKZMw5-SmwzIU1C5ftc9X1XzVLl-163n12MWh42-aFWB7INdSXLv0aPSTqn8AZoa0Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1953180992</pqid></control><display><type>article</type><title>Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yewale, Tatyaso ; Panchwagh, Shruti ; Sawale, Shaileshkumar ; Jain, Rishi ; Dhamole, Pradip B.</creator><creatorcontrib>Yewale, Tatyaso ; Panchwagh, Shruti ; Sawale, Shaileshkumar ; Jain, Rishi ; Dhamole, Pradip B.</creatorcontrib><description>Immobilized
Candida tropicalis
cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KH
2
PO
4
and initial pH were identified as significant variables by Plackett–Burman (PB) design. Significant medium components were optimized by response surface methodology (RSM). Predicted xylitol yield by RSM model and experimental yield was 0.87 and 0.79 g/g, respectively. Optimized conditions (urea 1.5 g/L, KH
2
PO
4
1.9 g/L, xylose 55 g/L, pH 6.7) enhanced xylitol yield by 32% and xylose consumption by twofold over those of basal media. In addition, the immobilized cells were reused five times at shake flask level with optimized medium without affecting the xylitol productivity and yield. Xylitol production was successfully scaled up to 7.5 L stirred tank reactor using optimized media. Thus, the optimized condition with non-detoxified pentose hydrolysate from corn cob lignocellulosic waste with minimal nutrients without any sterilization opens up the scope for commercialization of the process.</description><identifier>ISSN: 2190-572X</identifier><identifier>EISSN: 2190-5738</identifier><identifier>DOI: 10.1007/s13205-017-0700-2</identifier><identifier>PMID: 28452022</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Alginic acid ; Beads ; Bioinformatics ; Biomaterials ; Biotechnology ; Calcium alginate ; Cancer Research ; Chemistry ; Chemistry and Materials Science ; Commercialization ; Corn ; Design optimization ; Detoxification ; Fermentation ; Freeze drying ; Identification methods ; Immobilized cells ; Lignocellulose ; Media ; Nutrients ; Original ; Original Article ; Pentose ; pH effects ; Response surface methodology ; Statistical methods ; Stem Cells ; Sterilization ; Urea ; Xylitol ; Xylose ; Zea mays</subject><ispartof>3 Biotech, 2017-05, Vol.7 (1), p.68-9, Article 68</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>3 Biotech is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-4ce60e1dd58ad369e4b74ba48db0d7601c66ed7362505ca01e1562166a5af7ad3</citedby><cites>FETCH-LOGICAL-c470t-4ce60e1dd58ad369e4b74ba48db0d7601c66ed7362505ca01e1562166a5af7ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428108/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428108/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,41487,42556,51318,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28452022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yewale, Tatyaso</creatorcontrib><creatorcontrib>Panchwagh, Shruti</creatorcontrib><creatorcontrib>Sawale, Shaileshkumar</creatorcontrib><creatorcontrib>Jain, Rishi</creatorcontrib><creatorcontrib>Dhamole, Pradip B.</creatorcontrib><title>Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components</title><title>3 Biotech</title><addtitle>3 Biotech</addtitle><addtitle>3 Biotech</addtitle><description>Immobilized
Candida tropicalis
cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KH
2
PO
4
and initial pH were identified as significant variables by Plackett–Burman (PB) design. Significant medium components were optimized by response surface methodology (RSM). Predicted xylitol yield by RSM model and experimental yield was 0.87 and 0.79 g/g, respectively. Optimized conditions (urea 1.5 g/L, KH
2
PO
4
1.9 g/L, xylose 55 g/L, pH 6.7) enhanced xylitol yield by 32% and xylose consumption by twofold over those of basal media. In addition, the immobilized cells were reused five times at shake flask level with optimized medium without affecting the xylitol productivity and yield. Xylitol production was successfully scaled up to 7.5 L stirred tank reactor using optimized media. Thus, the optimized condition with non-detoxified pentose hydrolysate from corn cob lignocellulosic waste with minimal nutrients without any sterilization opens up the scope for commercialization of the process.</description><subject>Agriculture</subject><subject>Alginic acid</subject><subject>Beads</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Calcium alginate</subject><subject>Cancer Research</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Commercialization</subject><subject>Corn</subject><subject>Design optimization</subject><subject>Detoxification</subject><subject>Fermentation</subject><subject>Freeze drying</subject><subject>Identification methods</subject><subject>Immobilized cells</subject><subject>Lignocellulose</subject><subject>Media</subject><subject>Nutrients</subject><subject>Original</subject><subject>Original Article</subject><subject>Pentose</subject><subject>pH effects</subject><subject>Response surface methodology</subject><subject>Statistical methods</subject><subject>Stem Cells</subject><subject>Sterilization</subject><subject>Urea</subject><subject>Xylitol</subject><subject>Xylose</subject><subject>Zea mays</subject><issn>2190-572X</issn><issn>2190-5738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFrFDEUxgex2NL2D_AiAS9eRl8yk2TmIkjRKhS8VOgtZJPMNiWTtyYZdQ_-72a7dalCc0nI-73vvY-vaV5SeEsB5LtMOwa8BSpbkAAte9acMDpCy2U3PD-82c1xc57zHdTDKR8pvGiO2dBzBoydNL9vtsEXDGST0C6meIxkSjiTiLG1ruAvP3lniY72_isXl3xwJPh1RONCWAJmb8jt1iYM26yLI0v2cU0C_mwN5kJ8tEsuyetAZme9JgbnDUYXSz5rjiYdsjt_uE-bb58-Xl98bq--Xn65-HDVml5CaXvjBDhqLR-07cTo-pXsV7of7AqsFECNEM7KTjAO3GigjnLBqBCa60nWltPm_V53s6zqDqbOTjqoTfKzTluF2qt_K9HfqjX-ULxnA4WhCrx5EEj4fXG5qNnnnX0dHS5Z0WHsOO9h7Cv6-j_0DpcUqz1FR97RAcaRVYruKZMw5-SmwzIU1C5ftc9X1XzVLl-163n12MWh42-aFWB7INdSXLv0aPSTqn8AZoa0Rw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Yewale, Tatyaso</creator><creator>Panchwagh, Shruti</creator><creator>Sawale, Shaileshkumar</creator><creator>Jain, Rishi</creator><creator>Dhamole, Pradip B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170501</creationdate><title>Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components</title><author>Yewale, Tatyaso ; Panchwagh, Shruti ; Sawale, Shaileshkumar ; Jain, Rishi ; Dhamole, Pradip B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-4ce60e1dd58ad369e4b74ba48db0d7601c66ed7362505ca01e1562166a5af7ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Alginic acid</topic><topic>Beads</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Calcium alginate</topic><topic>Cancer Research</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Commercialization</topic><topic>Corn</topic><topic>Design optimization</topic><topic>Detoxification</topic><topic>Fermentation</topic><topic>Freeze drying</topic><topic>Identification methods</topic><topic>Immobilized cells</topic><topic>Lignocellulose</topic><topic>Media</topic><topic>Nutrients</topic><topic>Original</topic><topic>Original Article</topic><topic>Pentose</topic><topic>pH effects</topic><topic>Response surface methodology</topic><topic>Statistical methods</topic><topic>Stem Cells</topic><topic>Sterilization</topic><topic>Urea</topic><topic>Xylitol</topic><topic>Xylose</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yewale, Tatyaso</creatorcontrib><creatorcontrib>Panchwagh, Shruti</creatorcontrib><creatorcontrib>Sawale, Shaileshkumar</creatorcontrib><creatorcontrib>Jain, Rishi</creatorcontrib><creatorcontrib>Dhamole, Pradip B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>3 Biotech</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yewale, Tatyaso</au><au>Panchwagh, Shruti</au><au>Sawale, Shaileshkumar</au><au>Jain, Rishi</au><au>Dhamole, Pradip B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components</atitle><jtitle>3 Biotech</jtitle><stitle>3 Biotech</stitle><addtitle>3 Biotech</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>68</spage><epage>9</epage><pages>68-9</pages><artnum>68</artnum><issn>2190-572X</issn><eissn>2190-5738</eissn><abstract>Immobilized
Candida tropicalis
cells in freeze dried calcium alginate beads were used for production of xylitol from lignocellulosic waste like corn cob hydrolysate without any detoxification and sterilization of media. Media components for xylitol fermentation were screened by statistical methods. Urea, KH
2
PO
4
and initial pH were identified as significant variables by Plackett–Burman (PB) design. Significant medium components were optimized by response surface methodology (RSM). Predicted xylitol yield by RSM model and experimental yield was 0.87 and 0.79 g/g, respectively. Optimized conditions (urea 1.5 g/L, KH
2
PO
4
1.9 g/L, xylose 55 g/L, pH 6.7) enhanced xylitol yield by 32% and xylose consumption by twofold over those of basal media. In addition, the immobilized cells were reused five times at shake flask level with optimized medium without affecting the xylitol productivity and yield. Xylitol production was successfully scaled up to 7.5 L stirred tank reactor using optimized media. Thus, the optimized condition with non-detoxified pentose hydrolysate from corn cob lignocellulosic waste with minimal nutrients without any sterilization opens up the scope for commercialization of the process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28452022</pmid><doi>10.1007/s13205-017-0700-2</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-572X |
ispartof | 3 Biotech, 2017-05, Vol.7 (1), p.68-9, Article 68 |
issn | 2190-572X 2190-5738 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5428108 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Alginic acid Beads Bioinformatics Biomaterials Biotechnology Calcium alginate Cancer Research Chemistry Chemistry and Materials Science Commercialization Corn Design optimization Detoxification Fermentation Freeze drying Identification methods Immobilized cells Lignocellulose Media Nutrients Original Original Article Pentose pH effects Response surface methodology Statistical methods Stem Cells Sterilization Urea Xylitol Xylose Zea mays |
title | Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Xylitol%20production%20from%20non-detoxified%20and%20non-sterile%20lignocellulosic%20hydrolysate%20using%20low-cost%20industrial%20media%20components&rft.jtitle=3%20Biotech&rft.au=Yewale,%20Tatyaso&rft.date=2017-05-01&rft.volume=7&rft.issue=1&rft.spage=68&rft.epage=9&rft.pages=68-9&rft.artnum=68&rft.issn=2190-572X&rft.eissn=2190-5738&rft_id=info:doi/10.1007/s13205-017-0700-2&rft_dat=%3Cproquest_pubme%3E1893554094%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1953180992&rft_id=info:pmid/28452022&rfr_iscdi=true |