Assessment of H2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe MitoA

Hydrogen sulfide (H2S) is produced endogenously in vivo and has multiple effects on signaling pathways and cell function. Mitochondria can be both an H2S source and sink, and many of the biological effects of H2S relate to its interactions with mitochondria. However, the significance of mitochondria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-05, Vol.292 (19), p.7761-7773
Hauptverfasser: Arndt, Sabine, Baeza-Garza, Carlos D., Logan, Angela, Rosa, Tiziana, Wedmann, Rudolf, Prime, Tracy A., Martin, Jack L., Saeb-Parsy, Kourosh, Krieg, Thomas, Filipovic, Milos R., Hartley, Richard C., Murphy, Michael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7773
container_issue 19
container_start_page 7761
container_title The Journal of biological chemistry
container_volume 292
creator Arndt, Sabine
Baeza-Garza, Carlos D.
Logan, Angela
Rosa, Tiziana
Wedmann, Rudolf
Prime, Tracy A.
Martin, Jack L.
Saeb-Parsy, Kourosh
Krieg, Thomas
Filipovic, Milos R.
Hartley, Richard C.
Murphy, Michael P.
description Hydrogen sulfide (H2S) is produced endogenously in vivo and has multiple effects on signaling pathways and cell function. Mitochondria can be both an H2S source and sink, and many of the biological effects of H2S relate to its interactions with mitochondria. However, the significance of mitochondrial H2S is uncertain, in part due to the difficulty of assessing changes in its concentration in vivo. Although a number of fluorescent H2S probes have been developed these are best suited to cells in culture and cannot be used in vivo. To address this unmet need we have developed a mitochondria-targeted H2S probe, MitoA, which can be used to assess relative changes in mitochondrial H2S levels in vivo. MitoA comprises a lipophilic triphenylphosphonium (TPP) cation coupled to an aryl azide. The TPP cation leads to the accumulation of MitoA inside mitochondria within tissues in vivo. There, the aryl azido group reacts with H2S to form an aryl amine (MitoN). The extent of conversion of MitoA to MitoN thus gives an indication of the levels of mitochondrial H2S in vivo. Both compounds can be detected sensitively by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the tissues, and quantified relative to deuterated internal standards. Here we describe the synthesis and characterization of MitoA and show that it can be used to assess changes in mitochondrial H2S levels in vivo. As a proof of principle we used MitoA to show that H2S levels increase in vivo during myocardial ischemia.
doi_str_mv 10.1074/jbc.M117.784678
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5427258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820418769</els_id><sourcerecordid>S0021925820418769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-3e5acb6eb5078d72000f373cb59c7d8c0feb5432b910531444a46962fae1c6893</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMotlbPXvMFts2_3WQvQilqBcWDCt5CNjvbRrqbJVlX-u1NqQgenMvAvHmPmR9C15TMKZFi8VHZ-ROlci6VKKQ6QVNKFM94Tt9P0ZQQRrOS5WqCLmL8IKlESc_RhCnOiCrEFG2WMUKMLXQD9g1esxfsOjy60ePP6LoNHraAO_ja7XENI-x8DzVu3eDt1nd1cCYbTNjAcJiaGHHswQ7BtzCEPe6DrwA_pe3lJTprzC7C1U-fobe729fVOnt8vn9YLR8zK1QxZBxyY6sCqpxIVUuWLm645LbKSytrZUmTJMFZVVKScyqEMKIoC9YYoLZQJZ-hm2Nu_1m1UNv0VzA73QfXmrDX3jj9V-ncVm_8qHPBZCKVAhbHABt8jAGaXy8l-sBcJ-b6wFwfmSdHeXRA-mt0EHS0DjoLtQsJhq69-9f7DbS1iaE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessment of H2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe MitoA</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Arndt, Sabine ; Baeza-Garza, Carlos D. ; Logan, Angela ; Rosa, Tiziana ; Wedmann, Rudolf ; Prime, Tracy A. ; Martin, Jack L. ; Saeb-Parsy, Kourosh ; Krieg, Thomas ; Filipovic, Milos R. ; Hartley, Richard C. ; Murphy, Michael P.</creator><creatorcontrib>Arndt, Sabine ; Baeza-Garza, Carlos D. ; Logan, Angela ; Rosa, Tiziana ; Wedmann, Rudolf ; Prime, Tracy A. ; Martin, Jack L. ; Saeb-Parsy, Kourosh ; Krieg, Thomas ; Filipovic, Milos R. ; Hartley, Richard C. ; Murphy, Michael P.</creatorcontrib><description>Hydrogen sulfide (H2S) is produced endogenously in vivo and has multiple effects on signaling pathways and cell function. Mitochondria can be both an H2S source and sink, and many of the biological effects of H2S relate to its interactions with mitochondria. However, the significance of mitochondrial H2S is uncertain, in part due to the difficulty of assessing changes in its concentration in vivo. Although a number of fluorescent H2S probes have been developed these are best suited to cells in culture and cannot be used in vivo. To address this unmet need we have developed a mitochondria-targeted H2S probe, MitoA, which can be used to assess relative changes in mitochondrial H2S levels in vivo. MitoA comprises a lipophilic triphenylphosphonium (TPP) cation coupled to an aryl azide. The TPP cation leads to the accumulation of MitoA inside mitochondria within tissues in vivo. There, the aryl azido group reacts with H2S to form an aryl amine (MitoN). The extent of conversion of MitoA to MitoN thus gives an indication of the levels of mitochondrial H2S in vivo. Both compounds can be detected sensitively by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the tissues, and quantified relative to deuterated internal standards. Here we describe the synthesis and characterization of MitoA and show that it can be used to assess changes in mitochondrial H2S levels in vivo. As a proof of principle we used MitoA to show that H2S levels increase in vivo during myocardial ischemia.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.784678</identifier><identifier>PMID: 28320864</identifier><language>eng</language><publisher>11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A: Elsevier Inc</publisher><subject>analytical chemistry ; chemical biology ; energy metabolism ; hydrogen sulfide ; hypoxia ; mass spectrometry (MS) ; Methods and Resources ; mitochondria</subject><ispartof>The Journal of biological chemistry, 2017-05, Vol.292 (19), p.7761-7773</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-3e5acb6eb5078d72000f373cb59c7d8c0feb5432b910531444a46962fae1c6893</citedby><cites>FETCH-LOGICAL-c486t-3e5acb6eb5078d72000f373cb59c7d8c0feb5432b910531444a46962fae1c6893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427258/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5427258/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Arndt, Sabine</creatorcontrib><creatorcontrib>Baeza-Garza, Carlos D.</creatorcontrib><creatorcontrib>Logan, Angela</creatorcontrib><creatorcontrib>Rosa, Tiziana</creatorcontrib><creatorcontrib>Wedmann, Rudolf</creatorcontrib><creatorcontrib>Prime, Tracy A.</creatorcontrib><creatorcontrib>Martin, Jack L.</creatorcontrib><creatorcontrib>Saeb-Parsy, Kourosh</creatorcontrib><creatorcontrib>Krieg, Thomas</creatorcontrib><creatorcontrib>Filipovic, Milos R.</creatorcontrib><creatorcontrib>Hartley, Richard C.</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><title>Assessment of H2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe MitoA</title><title>The Journal of biological chemistry</title><description>Hydrogen sulfide (H2S) is produced endogenously in vivo and has multiple effects on signaling pathways and cell function. Mitochondria can be both an H2S source and sink, and many of the biological effects of H2S relate to its interactions with mitochondria. However, the significance of mitochondrial H2S is uncertain, in part due to the difficulty of assessing changes in its concentration in vivo. Although a number of fluorescent H2S probes have been developed these are best suited to cells in culture and cannot be used in vivo. To address this unmet need we have developed a mitochondria-targeted H2S probe, MitoA, which can be used to assess relative changes in mitochondrial H2S levels in vivo. MitoA comprises a lipophilic triphenylphosphonium (TPP) cation coupled to an aryl azide. The TPP cation leads to the accumulation of MitoA inside mitochondria within tissues in vivo. There, the aryl azido group reacts with H2S to form an aryl amine (MitoN). The extent of conversion of MitoA to MitoN thus gives an indication of the levels of mitochondrial H2S in vivo. Both compounds can be detected sensitively by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the tissues, and quantified relative to deuterated internal standards. Here we describe the synthesis and characterization of MitoA and show that it can be used to assess changes in mitochondrial H2S levels in vivo. As a proof of principle we used MitoA to show that H2S levels increase in vivo during myocardial ischemia.</description><subject>analytical chemistry</subject><subject>chemical biology</subject><subject>energy metabolism</subject><subject>hydrogen sulfide</subject><subject>hypoxia</subject><subject>mass spectrometry (MS)</subject><subject>Methods and Resources</subject><subject>mitochondria</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMotlbPXvMFts2_3WQvQilqBcWDCt5CNjvbRrqbJVlX-u1NqQgenMvAvHmPmR9C15TMKZFi8VHZ-ROlci6VKKQ6QVNKFM94Tt9P0ZQQRrOS5WqCLmL8IKlESc_RhCnOiCrEFG2WMUKMLXQD9g1esxfsOjy60ePP6LoNHraAO_ja7XENI-x8DzVu3eDt1nd1cCYbTNjAcJiaGHHswQ7BtzCEPe6DrwA_pe3lJTprzC7C1U-fobe729fVOnt8vn9YLR8zK1QxZBxyY6sCqpxIVUuWLm645LbKSytrZUmTJMFZVVKScyqEMKIoC9YYoLZQJZ-hm2Nu_1m1UNv0VzA73QfXmrDX3jj9V-ncVm_8qHPBZCKVAhbHABt8jAGaXy8l-sBcJ-b6wFwfmSdHeXRA-mt0EHS0DjoLtQsJhq69-9f7DbS1iaE</recordid><startdate>20170512</startdate><enddate>20170512</enddate><creator>Arndt, Sabine</creator><creator>Baeza-Garza, Carlos D.</creator><creator>Logan, Angela</creator><creator>Rosa, Tiziana</creator><creator>Wedmann, Rudolf</creator><creator>Prime, Tracy A.</creator><creator>Martin, Jack L.</creator><creator>Saeb-Parsy, Kourosh</creator><creator>Krieg, Thomas</creator><creator>Filipovic, Milos R.</creator><creator>Hartley, Richard C.</creator><creator>Murphy, Michael P.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20170512</creationdate><title>Assessment of H2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe MitoA</title><author>Arndt, Sabine ; Baeza-Garza, Carlos D. ; Logan, Angela ; Rosa, Tiziana ; Wedmann, Rudolf ; Prime, Tracy A. ; Martin, Jack L. ; Saeb-Parsy, Kourosh ; Krieg, Thomas ; Filipovic, Milos R. ; Hartley, Richard C. ; Murphy, Michael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-3e5acb6eb5078d72000f373cb59c7d8c0feb5432b910531444a46962fae1c6893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>analytical chemistry</topic><topic>chemical biology</topic><topic>energy metabolism</topic><topic>hydrogen sulfide</topic><topic>hypoxia</topic><topic>mass spectrometry (MS)</topic><topic>Methods and Resources</topic><topic>mitochondria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arndt, Sabine</creatorcontrib><creatorcontrib>Baeza-Garza, Carlos D.</creatorcontrib><creatorcontrib>Logan, Angela</creatorcontrib><creatorcontrib>Rosa, Tiziana</creatorcontrib><creatorcontrib>Wedmann, Rudolf</creatorcontrib><creatorcontrib>Prime, Tracy A.</creatorcontrib><creatorcontrib>Martin, Jack L.</creatorcontrib><creatorcontrib>Saeb-Parsy, Kourosh</creatorcontrib><creatorcontrib>Krieg, Thomas</creatorcontrib><creatorcontrib>Filipovic, Milos R.</creatorcontrib><creatorcontrib>Hartley, Richard C.</creatorcontrib><creatorcontrib>Murphy, Michael P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arndt, Sabine</au><au>Baeza-Garza, Carlos D.</au><au>Logan, Angela</au><au>Rosa, Tiziana</au><au>Wedmann, Rudolf</au><au>Prime, Tracy A.</au><au>Martin, Jack L.</au><au>Saeb-Parsy, Kourosh</au><au>Krieg, Thomas</au><au>Filipovic, Milos R.</au><au>Hartley, Richard C.</au><au>Murphy, Michael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of H2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe MitoA</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2017-05-12</date><risdate>2017</risdate><volume>292</volume><issue>19</issue><spage>7761</spage><epage>7773</epage><pages>7761-7773</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Hydrogen sulfide (H2S) is produced endogenously in vivo and has multiple effects on signaling pathways and cell function. Mitochondria can be both an H2S source and sink, and many of the biological effects of H2S relate to its interactions with mitochondria. However, the significance of mitochondrial H2S is uncertain, in part due to the difficulty of assessing changes in its concentration in vivo. Although a number of fluorescent H2S probes have been developed these are best suited to cells in culture and cannot be used in vivo. To address this unmet need we have developed a mitochondria-targeted H2S probe, MitoA, which can be used to assess relative changes in mitochondrial H2S levels in vivo. MitoA comprises a lipophilic triphenylphosphonium (TPP) cation coupled to an aryl azide. The TPP cation leads to the accumulation of MitoA inside mitochondria within tissues in vivo. There, the aryl azido group reacts with H2S to form an aryl amine (MitoN). The extent of conversion of MitoA to MitoN thus gives an indication of the levels of mitochondrial H2S in vivo. Both compounds can be detected sensitively by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the tissues, and quantified relative to deuterated internal standards. Here we describe the synthesis and characterization of MitoA and show that it can be used to assess changes in mitochondrial H2S levels in vivo. As a proof of principle we used MitoA to show that H2S levels increase in vivo during myocardial ischemia.</abstract><cop>11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A</cop><pub>Elsevier Inc</pub><pmid>28320864</pmid><doi>10.1074/jbc.M117.784678</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-05, Vol.292 (19), p.7761-7773
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5427258
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects analytical chemistry
chemical biology
energy metabolism
hydrogen sulfide
hypoxia
mass spectrometry (MS)
Methods and Resources
mitochondria
title Assessment of H2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe MitoA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A15%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20H2S%20in%20vivo%20using%20the%20newly%20developed%20mitochondria-targeted%20mass%20spectrometry%20probe%20MitoA&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Arndt,%20Sabine&rft.date=2017-05-12&rft.volume=292&rft.issue=19&rft.spage=7761&rft.epage=7773&rft.pages=7761-7773&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.784678&rft_dat=%3Celsevier_pubme%3ES0021925820418769%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28320864&rft_els_id=S0021925820418769&rfr_iscdi=true