Prospective motion correction in functional MRI

Due to the intrinsic low sensitivity of BOLD-fMRI long scanning is required. Subject motion during fMRI scans reduces statistical significance of the activation maps and increases the prevalence of false activations. Motion correction is therefore an essential tool for a successful fMRI data analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2017-07, Vol.154, p.33-42
Hauptverfasser: Zaitsev, Maxim, Akin, Burak, LeVan, Pierre, Knowles, Benjamin R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue
container_start_page 33
container_title NeuroImage (Orlando, Fla.)
container_volume 154
creator Zaitsev, Maxim
Akin, Burak
LeVan, Pierre
Knowles, Benjamin R.
description Due to the intrinsic low sensitivity of BOLD-fMRI long scanning is required. Subject motion during fMRI scans reduces statistical significance of the activation maps and increases the prevalence of false activations. Motion correction is therefore an essential tool for a successful fMRI data analysis. Retrospective motion correction techniques are now commonplace and are incorporated into a wide range of fMRI analysis toolboxes. These techniques are advantageous due to robustness, sequence independence and have minimal impact on the fMRI study setup. Retrospective techniques however, do not provide an accurate intra-volume correction, nor can these techniques correct for the spin-history effects. The application of prospective motion correction in fMRI appears to be effective in reducing false positives and increasing sensitivity when compared to retrospective techniques, particularly in the cases of substantial motion. Especially advantageous in this regard is the combination of prospective motion correction with dynamic distortion correction. Nevertheless, none of the recent methods are able to recover activations in presence of motion that are comparable to no-motion conditions, which motivates further research in the area of adaptive dynamic imaging.
doi_str_mv 10.1016/j.neuroimage.2016.11.014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5427003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811916306218</els_id><sourcerecordid>1912668634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-e311d6ebd1e47034ec2dfe05852d07772b8d8f67d1d974868215d8fb0a25eac43</originalsourceid><addsrcrecordid>eNqFUU1P3DAUtFBRWbb9CyhSL70k-Nlx7Fwqtah8SItAiJ6trP1CvcrGWztZqf8eh4UtcOnJo_G8j3lDSAa0AArV6arocQzerZsHLFhiCoCCQnlAZkBrkddCsg8TFjxXAPUROY5xRSmtoVQfyRGTqhRMVDNyeht83KAZ3BaztR-c7zPjQ5iYBF2ftWP_hJsuu767-kQO26aL-Pn5nZNf5z_vzy7zxc3F1dn3RW4ElUOOHMBWuLSApaS8RMNsi1QowSyVUrKlsqqtpAVby1JVioFIxJI2TGBjSj4n33Z9N-NyjdZgP4Sm05uQPIe_2jdOv_3p3W_94LdalExSylODr88Ngv8zYhz02kWDXdf06MeoQfFacsk5TdIv76QrP4ZkOKlqYFWlKj5tpHYqky4WA7b7ZYDqKRW90v9S0VMqGkCnVFLpyWsz-8KXGJLgx06A6aRbh0FH47A3aN2UhLbe_X_KI5sqoyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1912668634</pqid></control><display><type>article</type><title>Prospective motion correction in functional MRI</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Zaitsev, Maxim ; Akin, Burak ; LeVan, Pierre ; Knowles, Benjamin R.</creator><creatorcontrib>Zaitsev, Maxim ; Akin, Burak ; LeVan, Pierre ; Knowles, Benjamin R.</creatorcontrib><description>Due to the intrinsic low sensitivity of BOLD-fMRI long scanning is required. Subject motion during fMRI scans reduces statistical significance of the activation maps and increases the prevalence of false activations. Motion correction is therefore an essential tool for a successful fMRI data analysis. Retrospective motion correction techniques are now commonplace and are incorporated into a wide range of fMRI analysis toolboxes. These techniques are advantageous due to robustness, sequence independence and have minimal impact on the fMRI study setup. Retrospective techniques however, do not provide an accurate intra-volume correction, nor can these techniques correct for the spin-history effects. The application of prospective motion correction in fMRI appears to be effective in reducing false positives and increasing sensitivity when compared to retrospective techniques, particularly in the cases of substantial motion. Especially advantageous in this regard is the combination of prospective motion correction with dynamic distortion correction. Nevertheless, none of the recent methods are able to recover activations in presence of motion that are comparable to no-motion conditions, which motivates further research in the area of adaptive dynamic imaging.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2016.11.014</identifier><identifier>PMID: 27845256</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptive dynamic MRI ; Data processing ; fMRI ; Fourier transforms ; Function MRI ; Functional magnetic resonance imaging ; Functional Neuroimaging - methods ; Functional Neuroimaging - standards ; Humans ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - standards ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - standards ; Motion correction ; NMR ; Nuclear magnetic resonance ; Physiology ; Prospective motion correction ; Real-time motion correction ; Scanning ; Sensitivity ; Statistical analysis</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-07, Vol.154, p.33-42</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-e311d6ebd1e47034ec2dfe05852d07772b8d8f67d1d974868215d8fb0a25eac43</citedby><cites>FETCH-LOGICAL-c507t-e311d6ebd1e47034ec2dfe05852d07772b8d8f67d1d974868215d8fb0a25eac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1912668634?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994,64384,64386,64388,72240</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27845256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaitsev, Maxim</creatorcontrib><creatorcontrib>Akin, Burak</creatorcontrib><creatorcontrib>LeVan, Pierre</creatorcontrib><creatorcontrib>Knowles, Benjamin R.</creatorcontrib><title>Prospective motion correction in functional MRI</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Due to the intrinsic low sensitivity of BOLD-fMRI long scanning is required. Subject motion during fMRI scans reduces statistical significance of the activation maps and increases the prevalence of false activations. Motion correction is therefore an essential tool for a successful fMRI data analysis. Retrospective motion correction techniques are now commonplace and are incorporated into a wide range of fMRI analysis toolboxes. These techniques are advantageous due to robustness, sequence independence and have minimal impact on the fMRI study setup. Retrospective techniques however, do not provide an accurate intra-volume correction, nor can these techniques correct for the spin-history effects. The application of prospective motion correction in fMRI appears to be effective in reducing false positives and increasing sensitivity when compared to retrospective techniques, particularly in the cases of substantial motion. Especially advantageous in this regard is the combination of prospective motion correction with dynamic distortion correction. Nevertheless, none of the recent methods are able to recover activations in presence of motion that are comparable to no-motion conditions, which motivates further research in the area of adaptive dynamic imaging.</description><subject>Adaptive dynamic MRI</subject><subject>Data processing</subject><subject>fMRI</subject><subject>Fourier transforms</subject><subject>Function MRI</subject><subject>Functional magnetic resonance imaging</subject><subject>Functional Neuroimaging - methods</subject><subject>Functional Neuroimaging - standards</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - standards</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - standards</subject><subject>Motion correction</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physiology</subject><subject>Prospective motion correction</subject><subject>Real-time motion correction</subject><subject>Scanning</subject><subject>Sensitivity</subject><subject>Statistical analysis</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUU1P3DAUtFBRWbb9CyhSL70k-Nlx7Fwqtah8SItAiJ6trP1CvcrGWztZqf8eh4UtcOnJo_G8j3lDSAa0AArV6arocQzerZsHLFhiCoCCQnlAZkBrkddCsg8TFjxXAPUROY5xRSmtoVQfyRGTqhRMVDNyeht83KAZ3BaztR-c7zPjQ5iYBF2ftWP_hJsuu767-kQO26aL-Pn5nZNf5z_vzy7zxc3F1dn3RW4ElUOOHMBWuLSApaS8RMNsi1QowSyVUrKlsqqtpAVby1JVioFIxJI2TGBjSj4n33Z9N-NyjdZgP4Sm05uQPIe_2jdOv_3p3W_94LdalExSylODr88Ngv8zYhz02kWDXdf06MeoQfFacsk5TdIv76QrP4ZkOKlqYFWlKj5tpHYqky4WA7b7ZYDqKRW90v9S0VMqGkCnVFLpyWsz-8KXGJLgx06A6aRbh0FH47A3aN2UhLbe_X_KI5sqoyg</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Zaitsev, Maxim</creator><creator>Akin, Burak</creator><creator>LeVan, Pierre</creator><creator>Knowles, Benjamin R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170701</creationdate><title>Prospective motion correction in functional MRI</title><author>Zaitsev, Maxim ; Akin, Burak ; LeVan, Pierre ; Knowles, Benjamin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-e311d6ebd1e47034ec2dfe05852d07772b8d8f67d1d974868215d8fb0a25eac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive dynamic MRI</topic><topic>Data processing</topic><topic>fMRI</topic><topic>Fourier transforms</topic><topic>Function MRI</topic><topic>Functional magnetic resonance imaging</topic><topic>Functional Neuroimaging - methods</topic><topic>Functional Neuroimaging - standards</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - standards</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - standards</topic><topic>Motion correction</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physiology</topic><topic>Prospective motion correction</topic><topic>Real-time motion correction</topic><topic>Scanning</topic><topic>Sensitivity</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaitsev, Maxim</creatorcontrib><creatorcontrib>Akin, Burak</creatorcontrib><creatorcontrib>LeVan, Pierre</creatorcontrib><creatorcontrib>Knowles, Benjamin R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaitsev, Maxim</au><au>Akin, Burak</au><au>LeVan, Pierre</au><au>Knowles, Benjamin R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospective motion correction in functional MRI</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>154</volume><spage>33</spage><epage>42</epage><pages>33-42</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Due to the intrinsic low sensitivity of BOLD-fMRI long scanning is required. Subject motion during fMRI scans reduces statistical significance of the activation maps and increases the prevalence of false activations. Motion correction is therefore an essential tool for a successful fMRI data analysis. Retrospective motion correction techniques are now commonplace and are incorporated into a wide range of fMRI analysis toolboxes. These techniques are advantageous due to robustness, sequence independence and have minimal impact on the fMRI study setup. Retrospective techniques however, do not provide an accurate intra-volume correction, nor can these techniques correct for the spin-history effects. The application of prospective motion correction in fMRI appears to be effective in reducing false positives and increasing sensitivity when compared to retrospective techniques, particularly in the cases of substantial motion. Especially advantageous in this regard is the combination of prospective motion correction with dynamic distortion correction. Nevertheless, none of the recent methods are able to recover activations in presence of motion that are comparable to no-motion conditions, which motivates further research in the area of adaptive dynamic imaging.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27845256</pmid><doi>10.1016/j.neuroimage.2016.11.014</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2017-07, Vol.154, p.33-42
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5427003
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Adaptive dynamic MRI
Data processing
fMRI
Fourier transforms
Function MRI
Functional magnetic resonance imaging
Functional Neuroimaging - methods
Functional Neuroimaging - standards
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Motion correction
NMR
Nuclear magnetic resonance
Physiology
Prospective motion correction
Real-time motion correction
Scanning
Sensitivity
Statistical analysis
title Prospective motion correction in functional MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospective%20motion%20correction%20in%20functional%20MRI&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Zaitsev,%20Maxim&rft.date=2017-07-01&rft.volume=154&rft.spage=33&rft.epage=42&rft.pages=33-42&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2016.11.014&rft_dat=%3Cproquest_pubme%3E1912668634%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1912668634&rft_id=info:pmid/27845256&rft_els_id=S1053811916306218&rfr_iscdi=true