Novel Regulatory Mechanisms for the SoxC Transcriptional Network Required for Visual Pathway Development

What pathways specify retinal ganglion cell (RGC) fate in the developing retina? Here we report on mechanisms by which a molecular pathway involving Sox4/Sox11 is required for RGC differentiation and for optic nerve formation in mice , and is sufficient to differentiate human induced pluripotent ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2017-05, Vol.37 (19), p.4967-4981
Hauptverfasser: Chang, Kun-Che, Hertz, Jonathan, Zhang, Xiong, Jin, Xiao-Lu, Shaw, Peter, Derosa, Brooke A, Li, Janet Y, Venugopalan, Praseeda, Valenzuela, Daniel A, Patel, Roshni D, Russano, Kristina R, Alshamekh, Shomoukh A, Sun, Catalina, Tenerelli, Kevin, Li, Chenyi, Velmeshev, Dmitri, Cheng, Yuyan, Boyce, Timothy M, Dreyfuss, Alexandra, Uddin, Mohammed S, Muller, Kenneth J, Dykxhoorn, Derek M, Goldberg, Jeffrey L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4981
container_issue 19
container_start_page 4967
container_title The Journal of neuroscience
container_volume 37
creator Chang, Kun-Che
Hertz, Jonathan
Zhang, Xiong
Jin, Xiao-Lu
Shaw, Peter
Derosa, Brooke A
Li, Janet Y
Venugopalan, Praseeda
Valenzuela, Daniel A
Patel, Roshni D
Russano, Kristina R
Alshamekh, Shomoukh A
Sun, Catalina
Tenerelli, Kevin
Li, Chenyi
Velmeshev, Dmitri
Cheng, Yuyan
Boyce, Timothy M
Dreyfuss, Alexandra
Uddin, Mohammed S
Muller, Kenneth J
Dykxhoorn, Derek M
Goldberg, Jeffrey L
description What pathways specify retinal ganglion cell (RGC) fate in the developing retina? Here we report on mechanisms by which a molecular pathway involving Sox4/Sox11 is required for RGC differentiation and for optic nerve formation in mice , and is sufficient to differentiate human induced pluripotent stem cells into electrophysiologically active RGCs. These data place Sox4 downstream of RE1 silencing transcription factor in regulating RGC fate, and further describe a newly identified, Sox4-regulated site for post-translational modification with small ubiquitin-related modifier (SUMOylation) in Sox11, which suppresses Sox11's nuclear localization and its ability to promote RGC differentiation, providing a mechanism for the SoxC familial compensation observed here and elsewhere in the nervous system. These data define novel regulatory mechanisms for this SoxC molecular network, and suggest pro-RGC molecular approaches for cell replacement-based therapies for glaucoma and other optic neuropathies. Glaucoma is the most common cause of blindness worldwide and, along with other optic neuropathies, is characterized by loss of retinal ganglion cells (RGCs). Unfortunately, vision and RGC loss are irreversible, and lead to bilateral blindness in ∼14% of all diagnosed patients. Differentiated and transplanted RGC-like cells derived from stem cells have the potential to replace neurons that have already been lost and thereby to restore visual function. These data uncover new mechanisms of retinal progenitor cell (RPC)-to-RGC and human stem cell-to-RGC fate specification, and take a significant step toward understanding neuronal and retinal development and ultimately cell-transplant therapy.
doi_str_mv 10.1523/jneurosci.3430-13.2017
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5426184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094500340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-25c6477019f9cee3259a068101ff129a06825bd75bc8bc23e0f00630b3539bb33</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS0EokPhL1SR2LDJcP1KnA0SmhZaVKaoD7aW47lpPCTx1E5a5t_X05YKWNnS_c7xuT6EHFCYU8n4x_WAU_DRujkXHHLK5wxo-YLM0rTKmQD6ksyAlZAXohR75E2MawAoE_Sa7DElKGVFNSPt0t9il53j9dSZ0Ydt9h1tawYX-5g1PmRji9mF_73ILoMZog1uMzo_mC5b4njnw68kvZlcwNUD_dPFKc1-mLG9M9vsEJO53_Q4jG_Jq8Z0Ed89nfvk6svR5eI4Pz37erL4fJpbWdAxZ9KmwClm1VQWkTNZGSgUBdo0lD3cmaxXpaytqi3jCA1AwaHmkld1zfk--fTou5nqHlc2PR1MpzfB9SZstTdO_zsZXKuv_a2WghVUiWTw4ckg-JsJ46h7Fy12nRnQT1FTpVShuAJI6Pv_0LWfQvqcqBlUQiZE7KjikbKpsBiweQ5DQe_K1N-WR1fnZxeLE70rU1Oud2Um4cHfqzzL_rTH7wFq754U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094500340</pqid></control><display><type>article</type><title>Novel Regulatory Mechanisms for the SoxC Transcriptional Network Required for Visual Pathway Development</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Chang, Kun-Che ; Hertz, Jonathan ; Zhang, Xiong ; Jin, Xiao-Lu ; Shaw, Peter ; Derosa, Brooke A ; Li, Janet Y ; Venugopalan, Praseeda ; Valenzuela, Daniel A ; Patel, Roshni D ; Russano, Kristina R ; Alshamekh, Shomoukh A ; Sun, Catalina ; Tenerelli, Kevin ; Li, Chenyi ; Velmeshev, Dmitri ; Cheng, Yuyan ; Boyce, Timothy M ; Dreyfuss, Alexandra ; Uddin, Mohammed S ; Muller, Kenneth J ; Dykxhoorn, Derek M ; Goldberg, Jeffrey L</creator><creatorcontrib>Chang, Kun-Che ; Hertz, Jonathan ; Zhang, Xiong ; Jin, Xiao-Lu ; Shaw, Peter ; Derosa, Brooke A ; Li, Janet Y ; Venugopalan, Praseeda ; Valenzuela, Daniel A ; Patel, Roshni D ; Russano, Kristina R ; Alshamekh, Shomoukh A ; Sun, Catalina ; Tenerelli, Kevin ; Li, Chenyi ; Velmeshev, Dmitri ; Cheng, Yuyan ; Boyce, Timothy M ; Dreyfuss, Alexandra ; Uddin, Mohammed S ; Muller, Kenneth J ; Dykxhoorn, Derek M ; Goldberg, Jeffrey L</creatorcontrib><description>What pathways specify retinal ganglion cell (RGC) fate in the developing retina? Here we report on mechanisms by which a molecular pathway involving Sox4/Sox11 is required for RGC differentiation and for optic nerve formation in mice , and is sufficient to differentiate human induced pluripotent stem cells into electrophysiologically active RGCs. These data place Sox4 downstream of RE1 silencing transcription factor in regulating RGC fate, and further describe a newly identified, Sox4-regulated site for post-translational modification with small ubiquitin-related modifier (SUMOylation) in Sox11, which suppresses Sox11's nuclear localization and its ability to promote RGC differentiation, providing a mechanism for the SoxC familial compensation observed here and elsewhere in the nervous system. These data define novel regulatory mechanisms for this SoxC molecular network, and suggest pro-RGC molecular approaches for cell replacement-based therapies for glaucoma and other optic neuropathies. Glaucoma is the most common cause of blindness worldwide and, along with other optic neuropathies, is characterized by loss of retinal ganglion cells (RGCs). Unfortunately, vision and RGC loss are irreversible, and lead to bilateral blindness in ∼14% of all diagnosed patients. Differentiated and transplanted RGC-like cells derived from stem cells have the potential to replace neurons that have already been lost and thereby to restore visual function. These data uncover new mechanisms of retinal progenitor cell (RPC)-to-RGC and human stem cell-to-RGC fate specification, and take a significant step toward understanding neuronal and retinal development and ultimately cell-transplant therapy.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.3430-13.2017</identifier><identifier>PMID: 28411269</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Aging - physiology ; Animals ; Cells, Cultured ; Differentiation ; Feedback, Physiological - physiology ; Female ; Gene Expression Regulation, Developmental - physiology ; Gene Regulatory Networks - physiology ; Gene silencing ; Glaucoma ; Localization ; Male ; Mice ; Nervous system ; Optic nerve ; Pluripotency ; Post-translation ; Rats, Sprague-Dawley ; Regulatory mechanisms (biology) ; Retina ; Retinal ganglion cells ; Retinal Ganglion Cells - physiology ; SOXC Transcription Factors - metabolism ; Stem cell transplantation ; Stem cells ; SUMO protein ; Transcriptional Activation - physiology ; Ubiquitin ; Visual Pathways - physiology</subject><ispartof>The Journal of neuroscience, 2017-05, Vol.37 (19), p.4967-4981</ispartof><rights>Copyright © 2017 the authors 0270-6474/17/374967-15$15.00/0.</rights><rights>Copyright Society for Neuroscience May 10, 2017</rights><rights>Copyright © 2017 the authors 0270-6474/17/374967-15$15.00/0 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-25c6477019f9cee3259a068101ff129a06825bd75bc8bc23e0f00630b3539bb33</citedby><cites>FETCH-LOGICAL-c561t-25c6477019f9cee3259a068101ff129a06825bd75bc8bc23e0f00630b3539bb33</cites><orcidid>0000-0001-7392-6224 ; 0000-0002-0871-5612 ; 0000-0002-7440-8805 ; 0000-0002-1390-7360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426184/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5426184/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28411269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Kun-Che</creatorcontrib><creatorcontrib>Hertz, Jonathan</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Jin, Xiao-Lu</creatorcontrib><creatorcontrib>Shaw, Peter</creatorcontrib><creatorcontrib>Derosa, Brooke A</creatorcontrib><creatorcontrib>Li, Janet Y</creatorcontrib><creatorcontrib>Venugopalan, Praseeda</creatorcontrib><creatorcontrib>Valenzuela, Daniel A</creatorcontrib><creatorcontrib>Patel, Roshni D</creatorcontrib><creatorcontrib>Russano, Kristina R</creatorcontrib><creatorcontrib>Alshamekh, Shomoukh A</creatorcontrib><creatorcontrib>Sun, Catalina</creatorcontrib><creatorcontrib>Tenerelli, Kevin</creatorcontrib><creatorcontrib>Li, Chenyi</creatorcontrib><creatorcontrib>Velmeshev, Dmitri</creatorcontrib><creatorcontrib>Cheng, Yuyan</creatorcontrib><creatorcontrib>Boyce, Timothy M</creatorcontrib><creatorcontrib>Dreyfuss, Alexandra</creatorcontrib><creatorcontrib>Uddin, Mohammed S</creatorcontrib><creatorcontrib>Muller, Kenneth J</creatorcontrib><creatorcontrib>Dykxhoorn, Derek M</creatorcontrib><creatorcontrib>Goldberg, Jeffrey L</creatorcontrib><title>Novel Regulatory Mechanisms for the SoxC Transcriptional Network Required for Visual Pathway Development</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>What pathways specify retinal ganglion cell (RGC) fate in the developing retina? Here we report on mechanisms by which a molecular pathway involving Sox4/Sox11 is required for RGC differentiation and for optic nerve formation in mice , and is sufficient to differentiate human induced pluripotent stem cells into electrophysiologically active RGCs. These data place Sox4 downstream of RE1 silencing transcription factor in regulating RGC fate, and further describe a newly identified, Sox4-regulated site for post-translational modification with small ubiquitin-related modifier (SUMOylation) in Sox11, which suppresses Sox11's nuclear localization and its ability to promote RGC differentiation, providing a mechanism for the SoxC familial compensation observed here and elsewhere in the nervous system. These data define novel regulatory mechanisms for this SoxC molecular network, and suggest pro-RGC molecular approaches for cell replacement-based therapies for glaucoma and other optic neuropathies. Glaucoma is the most common cause of blindness worldwide and, along with other optic neuropathies, is characterized by loss of retinal ganglion cells (RGCs). Unfortunately, vision and RGC loss are irreversible, and lead to bilateral blindness in ∼14% of all diagnosed patients. Differentiated and transplanted RGC-like cells derived from stem cells have the potential to replace neurons that have already been lost and thereby to restore visual function. These data uncover new mechanisms of retinal progenitor cell (RPC)-to-RGC and human stem cell-to-RGC fate specification, and take a significant step toward understanding neuronal and retinal development and ultimately cell-transplant therapy.</description><subject>Aging - physiology</subject><subject>Animals</subject><subject>Cells, Cultured</subject><subject>Differentiation</subject><subject>Feedback, Physiological - physiology</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Gene Regulatory Networks - physiology</subject><subject>Gene silencing</subject><subject>Glaucoma</subject><subject>Localization</subject><subject>Male</subject><subject>Mice</subject><subject>Nervous system</subject><subject>Optic nerve</subject><subject>Pluripotency</subject><subject>Post-translation</subject><subject>Rats, Sprague-Dawley</subject><subject>Regulatory mechanisms (biology)</subject><subject>Retina</subject><subject>Retinal ganglion cells</subject><subject>Retinal Ganglion Cells - physiology</subject><subject>SOXC Transcription Factors - metabolism</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>SUMO protein</subject><subject>Transcriptional Activation - physiology</subject><subject>Ubiquitin</subject><subject>Visual Pathways - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAUhS0EokPhL1SR2LDJcP1KnA0SmhZaVKaoD7aW47lpPCTx1E5a5t_X05YKWNnS_c7xuT6EHFCYU8n4x_WAU_DRujkXHHLK5wxo-YLM0rTKmQD6ksyAlZAXohR75E2MawAoE_Sa7DElKGVFNSPt0t9il53j9dSZ0Ydt9h1tawYX-5g1PmRji9mF_73ILoMZog1uMzo_mC5b4njnw68kvZlcwNUD_dPFKc1-mLG9M9vsEJO53_Q4jG_Jq8Z0Ed89nfvk6svR5eI4Pz37erL4fJpbWdAxZ9KmwClm1VQWkTNZGSgUBdo0lD3cmaxXpaytqi3jCA1AwaHmkld1zfk--fTou5nqHlc2PR1MpzfB9SZstTdO_zsZXKuv_a2WghVUiWTw4ckg-JsJ46h7Fy12nRnQT1FTpVShuAJI6Pv_0LWfQvqcqBlUQiZE7KjikbKpsBiweQ5DQe_K1N-WR1fnZxeLE70rU1Oud2Um4cHfqzzL_rTH7wFq754U</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Chang, Kun-Che</creator><creator>Hertz, Jonathan</creator><creator>Zhang, Xiong</creator><creator>Jin, Xiao-Lu</creator><creator>Shaw, Peter</creator><creator>Derosa, Brooke A</creator><creator>Li, Janet Y</creator><creator>Venugopalan, Praseeda</creator><creator>Valenzuela, Daniel A</creator><creator>Patel, Roshni D</creator><creator>Russano, Kristina R</creator><creator>Alshamekh, Shomoukh A</creator><creator>Sun, Catalina</creator><creator>Tenerelli, Kevin</creator><creator>Li, Chenyi</creator><creator>Velmeshev, Dmitri</creator><creator>Cheng, Yuyan</creator><creator>Boyce, Timothy M</creator><creator>Dreyfuss, Alexandra</creator><creator>Uddin, Mohammed S</creator><creator>Muller, Kenneth J</creator><creator>Dykxhoorn, Derek M</creator><creator>Goldberg, Jeffrey L</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7392-6224</orcidid><orcidid>https://orcid.org/0000-0002-0871-5612</orcidid><orcidid>https://orcid.org/0000-0002-7440-8805</orcidid><orcidid>https://orcid.org/0000-0002-1390-7360</orcidid></search><sort><creationdate>20170510</creationdate><title>Novel Regulatory Mechanisms for the SoxC Transcriptional Network Required for Visual Pathway Development</title><author>Chang, Kun-Che ; Hertz, Jonathan ; Zhang, Xiong ; Jin, Xiao-Lu ; Shaw, Peter ; Derosa, Brooke A ; Li, Janet Y ; Venugopalan, Praseeda ; Valenzuela, Daniel A ; Patel, Roshni D ; Russano, Kristina R ; Alshamekh, Shomoukh A ; Sun, Catalina ; Tenerelli, Kevin ; Li, Chenyi ; Velmeshev, Dmitri ; Cheng, Yuyan ; Boyce, Timothy M ; Dreyfuss, Alexandra ; Uddin, Mohammed S ; Muller, Kenneth J ; Dykxhoorn, Derek M ; Goldberg, Jeffrey L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-25c6477019f9cee3259a068101ff129a06825bd75bc8bc23e0f00630b3539bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aging - physiology</topic><topic>Animals</topic><topic>Cells, Cultured</topic><topic>Differentiation</topic><topic>Feedback, Physiological - physiology</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Gene Regulatory Networks - physiology</topic><topic>Gene silencing</topic><topic>Glaucoma</topic><topic>Localization</topic><topic>Male</topic><topic>Mice</topic><topic>Nervous system</topic><topic>Optic nerve</topic><topic>Pluripotency</topic><topic>Post-translation</topic><topic>Rats, Sprague-Dawley</topic><topic>Regulatory mechanisms (biology)</topic><topic>Retina</topic><topic>Retinal ganglion cells</topic><topic>Retinal Ganglion Cells - physiology</topic><topic>SOXC Transcription Factors - metabolism</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>SUMO protein</topic><topic>Transcriptional Activation - physiology</topic><topic>Ubiquitin</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Kun-Che</creatorcontrib><creatorcontrib>Hertz, Jonathan</creatorcontrib><creatorcontrib>Zhang, Xiong</creatorcontrib><creatorcontrib>Jin, Xiao-Lu</creatorcontrib><creatorcontrib>Shaw, Peter</creatorcontrib><creatorcontrib>Derosa, Brooke A</creatorcontrib><creatorcontrib>Li, Janet Y</creatorcontrib><creatorcontrib>Venugopalan, Praseeda</creatorcontrib><creatorcontrib>Valenzuela, Daniel A</creatorcontrib><creatorcontrib>Patel, Roshni D</creatorcontrib><creatorcontrib>Russano, Kristina R</creatorcontrib><creatorcontrib>Alshamekh, Shomoukh A</creatorcontrib><creatorcontrib>Sun, Catalina</creatorcontrib><creatorcontrib>Tenerelli, Kevin</creatorcontrib><creatorcontrib>Li, Chenyi</creatorcontrib><creatorcontrib>Velmeshev, Dmitri</creatorcontrib><creatorcontrib>Cheng, Yuyan</creatorcontrib><creatorcontrib>Boyce, Timothy M</creatorcontrib><creatorcontrib>Dreyfuss, Alexandra</creatorcontrib><creatorcontrib>Uddin, Mohammed S</creatorcontrib><creatorcontrib>Muller, Kenneth J</creatorcontrib><creatorcontrib>Dykxhoorn, Derek M</creatorcontrib><creatorcontrib>Goldberg, Jeffrey L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Kun-Che</au><au>Hertz, Jonathan</au><au>Zhang, Xiong</au><au>Jin, Xiao-Lu</au><au>Shaw, Peter</au><au>Derosa, Brooke A</au><au>Li, Janet Y</au><au>Venugopalan, Praseeda</au><au>Valenzuela, Daniel A</au><au>Patel, Roshni D</au><au>Russano, Kristina R</au><au>Alshamekh, Shomoukh A</au><au>Sun, Catalina</au><au>Tenerelli, Kevin</au><au>Li, Chenyi</au><au>Velmeshev, Dmitri</au><au>Cheng, Yuyan</au><au>Boyce, Timothy M</au><au>Dreyfuss, Alexandra</au><au>Uddin, Mohammed S</au><au>Muller, Kenneth J</au><au>Dykxhoorn, Derek M</au><au>Goldberg, Jeffrey L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Regulatory Mechanisms for the SoxC Transcriptional Network Required for Visual Pathway Development</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>37</volume><issue>19</issue><spage>4967</spage><epage>4981</epage><pages>4967-4981</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>What pathways specify retinal ganglion cell (RGC) fate in the developing retina? Here we report on mechanisms by which a molecular pathway involving Sox4/Sox11 is required for RGC differentiation and for optic nerve formation in mice , and is sufficient to differentiate human induced pluripotent stem cells into electrophysiologically active RGCs. These data place Sox4 downstream of RE1 silencing transcription factor in regulating RGC fate, and further describe a newly identified, Sox4-regulated site for post-translational modification with small ubiquitin-related modifier (SUMOylation) in Sox11, which suppresses Sox11's nuclear localization and its ability to promote RGC differentiation, providing a mechanism for the SoxC familial compensation observed here and elsewhere in the nervous system. These data define novel regulatory mechanisms for this SoxC molecular network, and suggest pro-RGC molecular approaches for cell replacement-based therapies for glaucoma and other optic neuropathies. Glaucoma is the most common cause of blindness worldwide and, along with other optic neuropathies, is characterized by loss of retinal ganglion cells (RGCs). Unfortunately, vision and RGC loss are irreversible, and lead to bilateral blindness in ∼14% of all diagnosed patients. Differentiated and transplanted RGC-like cells derived from stem cells have the potential to replace neurons that have already been lost and thereby to restore visual function. These data uncover new mechanisms of retinal progenitor cell (RPC)-to-RGC and human stem cell-to-RGC fate specification, and take a significant step toward understanding neuronal and retinal development and ultimately cell-transplant therapy.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>28411269</pmid><doi>10.1523/jneurosci.3430-13.2017</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7392-6224</orcidid><orcidid>https://orcid.org/0000-0002-0871-5612</orcidid><orcidid>https://orcid.org/0000-0002-7440-8805</orcidid><orcidid>https://orcid.org/0000-0002-1390-7360</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2017-05, Vol.37 (19), p.4967-4981
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5426184
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Aging - physiology
Animals
Cells, Cultured
Differentiation
Feedback, Physiological - physiology
Female
Gene Expression Regulation, Developmental - physiology
Gene Regulatory Networks - physiology
Gene silencing
Glaucoma
Localization
Male
Mice
Nervous system
Optic nerve
Pluripotency
Post-translation
Rats, Sprague-Dawley
Regulatory mechanisms (biology)
Retina
Retinal ganglion cells
Retinal Ganglion Cells - physiology
SOXC Transcription Factors - metabolism
Stem cell transplantation
Stem cells
SUMO protein
Transcriptional Activation - physiology
Ubiquitin
Visual Pathways - physiology
title Novel Regulatory Mechanisms for the SoxC Transcriptional Network Required for Visual Pathway Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Regulatory%20Mechanisms%20for%20the%20SoxC%20Transcriptional%20Network%20Required%20for%20Visual%20Pathway%20Development&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Chang,%20Kun-Che&rft.date=2017-05-10&rft.volume=37&rft.issue=19&rft.spage=4967&rft.epage=4981&rft.pages=4967-4981&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.3430-13.2017&rft_dat=%3Cproquest_pubme%3E2094500340%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094500340&rft_id=info:pmid/28411269&rfr_iscdi=true