AESOP: A Python Library for Investigating Electrostatics in Protein Interactions
Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2017-05, Vol.112 (9), p.1761-1766 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1766 |
---|---|
container_issue | 9 |
container_start_page | 1761 |
container_title | Biophysical journal |
container_volume | 112 |
creator | Harrison, Reed E.S. Mohan, Rohith R. Gorham, Ronald D. Kieslich, Chris A. Morikis, Dimitrios |
description | Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association. |
doi_str_mv | 10.1016/j.bpj.2017.04.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5425408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349517303922</els_id><sourcerecordid>1922447150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-e12ab2759de224f02588eca9a979cdbab42db24af7510c29ced200992a8715653</originalsourceid><addsrcrecordid>eNp9UU1rGzEQFSWlcZP-gF7CQi697HakSN5VAwUT3NZgiCHJWWi1WkfLWnIk2ZB_3wlOQ5pD0GEQ8-bxPgj5SqGiQKffh6rdDhUDWlfAKwDxgUyo4KwEaKZHZAIA0_KCS3FMPqc0AFAmgH4ix6zhEl89IavZ_OZ69aOYFavHfB98sXRt1PGx6EMsFn5vU3ZrnZ1fF_PRmhxDyvg1qXC-WMWQLc6FzzZqk13w6ZR87PWY7JfneULufs1vr_6Uy-vfi6vZsjS8lrm0lOmW1UJ2ljHeAxNNY42WWtbSdK1uOetaxnVfCwqGSWM7BiAl001NxVRcnJCfB97trt3Yzlifox7VNroNyldBO_X_xrt7tQ57hfkIDg0SfHsmiOFhhz7VxiVjx1F7G3ZJ0UZKCkJyjtDzN9Ah7KJHe4pKlM9REiCKHlAGQ0rR9i9iKKinvtSgsC_11JcCrrAvvDl77eLl4l9BCLg8ACxmuXc2qmSc9RiHi1iH6oJ7h_4vCQCl7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1922447150</pqid></control><display><type>article</type><title>AESOP: A Python Library for Investigating Electrostatics in Protein Interactions</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Harrison, Reed E.S. ; Mohan, Rohith R. ; Gorham, Ronald D. ; Kieslich, Chris A. ; Morikis, Dimitrios</creator><creatorcontrib>Harrison, Reed E.S. ; Mohan, Rohith R. ; Gorham, Ronald D. ; Kieslich, Chris A. ; Morikis, Dimitrios</creatorcontrib><description>Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2017.04.005</identifier><identifier>PMID: 28494947</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alanine - chemistry ; Alanine - metabolism ; Algorithms ; Amino acids ; Computation ; Computational Tools ; Computer applications ; Diffusion ; Diffusion rate ; Electric fields ; Electrostatic properties ; Electrostatics ; Enzymes ; Internet ; Mutants ; Mutation ; Protein families ; Protein interaction ; Protein structure ; Proteins ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism ; Python ; Software ; Static Electricity ; Thermodynamics</subject><ispartof>Biophysical journal, 2017-05, Vol.112 (9), p.1761-1766</ispartof><rights>2017 Biophysical Society</rights><rights>Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society May 9, 2017</rights><rights>2017 Biophysical Society. 2017 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-e12ab2759de224f02588eca9a979cdbab42db24af7510c29ced200992a8715653</citedby><cites>FETCH-LOGICAL-c479t-e12ab2759de224f02588eca9a979cdbab42db24af7510c29ced200992a8715653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5425408/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2017.04.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28494947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harrison, Reed E.S.</creatorcontrib><creatorcontrib>Mohan, Rohith R.</creatorcontrib><creatorcontrib>Gorham, Ronald D.</creatorcontrib><creatorcontrib>Kieslich, Chris A.</creatorcontrib><creatorcontrib>Morikis, Dimitrios</creatorcontrib><title>AESOP: A Python Library for Investigating Electrostatics in Protein Interactions</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association.</description><subject>Alanine - chemistry</subject><subject>Alanine - metabolism</subject><subject>Algorithms</subject><subject>Amino acids</subject><subject>Computation</subject><subject>Computational Tools</subject><subject>Computer applications</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Electric fields</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Enzymes</subject><subject>Internet</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Protein families</subject><subject>Protein interaction</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Python</subject><subject>Software</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1rGzEQFSWlcZP-gF7CQi697HakSN5VAwUT3NZgiCHJWWi1WkfLWnIk2ZB_3wlOQ5pD0GEQ8-bxPgj5SqGiQKffh6rdDhUDWlfAKwDxgUyo4KwEaKZHZAIA0_KCS3FMPqc0AFAmgH4ix6zhEl89IavZ_OZ69aOYFavHfB98sXRt1PGx6EMsFn5vU3ZrnZ1fF_PRmhxDyvg1qXC-WMWQLc6FzzZqk13w6ZR87PWY7JfneULufs1vr_6Uy-vfi6vZsjS8lrm0lOmW1UJ2ljHeAxNNY42WWtbSdK1uOetaxnVfCwqGSWM7BiAl001NxVRcnJCfB97trt3Yzlifox7VNroNyldBO_X_xrt7tQ57hfkIDg0SfHsmiOFhhz7VxiVjx1F7G3ZJ0UZKCkJyjtDzN9Ah7KJHe4pKlM9REiCKHlAGQ0rR9i9iKKinvtSgsC_11JcCrrAvvDl77eLl4l9BCLg8ACxmuXc2qmSc9RiHi1iH6oJ7h_4vCQCl7Q</recordid><startdate>20170509</startdate><enddate>20170509</enddate><creator>Harrison, Reed E.S.</creator><creator>Mohan, Rohith R.</creator><creator>Gorham, Ronald D.</creator><creator>Kieslich, Chris A.</creator><creator>Morikis, Dimitrios</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170509</creationdate><title>AESOP: A Python Library for Investigating Electrostatics in Protein Interactions</title><author>Harrison, Reed E.S. ; Mohan, Rohith R. ; Gorham, Ronald D. ; Kieslich, Chris A. ; Morikis, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-e12ab2759de224f02588eca9a979cdbab42db24af7510c29ced200992a8715653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alanine - chemistry</topic><topic>Alanine - metabolism</topic><topic>Algorithms</topic><topic>Amino acids</topic><topic>Computation</topic><topic>Computational Tools</topic><topic>Computer applications</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Electric fields</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Enzymes</topic><topic>Internet</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Protein families</topic><topic>Protein interaction</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Python</topic><topic>Software</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrison, Reed E.S.</creatorcontrib><creatorcontrib>Mohan, Rohith R.</creatorcontrib><creatorcontrib>Gorham, Ronald D.</creatorcontrib><creatorcontrib>Kieslich, Chris A.</creatorcontrib><creatorcontrib>Morikis, Dimitrios</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrison, Reed E.S.</au><au>Mohan, Rohith R.</au><au>Gorham, Ronald D.</au><au>Kieslich, Chris A.</au><au>Morikis, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AESOP: A Python Library for Investigating Electrostatics in Protein Interactions</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2017-05-09</date><risdate>2017</risdate><volume>112</volume><issue>9</issue><spage>1761</spage><epage>1766</epage><pages>1761-1766</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28494947</pmid><doi>10.1016/j.bpj.2017.04.005</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2017-05, Vol.112 (9), p.1761-1766 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5425408 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Alanine - chemistry Alanine - metabolism Algorithms Amino acids Computation Computational Tools Computer applications Diffusion Diffusion rate Electric fields Electrostatic properties Electrostatics Enzymes Internet Mutants Mutation Protein families Protein interaction Protein structure Proteins Proteins - chemistry Proteins - genetics Proteins - metabolism Python Software Static Electricity Thermodynamics |
title | AESOP: A Python Library for Investigating Electrostatics in Protein Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AESOP:%20A%20Python%20Library%20for%20Investigating%20Electrostatics%20in%20Protein%20Interactions&rft.jtitle=Biophysical%20journal&rft.au=Harrison,%20Reed%20E.S.&rft.date=2017-05-09&rft.volume=112&rft.issue=9&rft.spage=1761&rft.epage=1766&rft.pages=1761-1766&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2017.04.005&rft_dat=%3Cproquest_pubme%3E1922447150%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1922447150&rft_id=info:pmid/28494947&rft_els_id=S0006349517303922&rfr_iscdi=true |