Human genetics as a model for target validation: finding new therapies for diabetes

Type 2 diabetes is a global epidemic with major effects on healthcare expenditure and quality of life. Currently available treatments are inadequate for the prevention of comorbidities, yet progress towards new therapies remains slow. A major barrier is the insufficiency of traditional preclinical m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 2017-06, Vol.60 (6), p.960-970
Hauptverfasser: Thomsen, Soren K., Gloyn, Anna L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 970
container_issue 6
container_start_page 960
container_title Diabetologia
container_volume 60
creator Thomsen, Soren K.
Gloyn, Anna L.
description Type 2 diabetes is a global epidemic with major effects on healthcare expenditure and quality of life. Currently available treatments are inadequate for the prevention of comorbidities, yet progress towards new therapies remains slow. A major barrier is the insufficiency of traditional preclinical models for predicting drug efficacy and safety. Human genetics offers a complementary model to assess causal mechanisms for target validation. Genetic perturbations are ‘experiments of nature’ that provide a uniquely relevant window into the long-term effects of modulating specific targets. Here, we show that genetic discoveries over the past decades have accurately predicted (now known) therapeutic mechanisms for type 2 diabetes. These findings highlight the potential for use of human genetic variation for prospective target validation, and establish a framework for future applications. Studies into rare, monogenic forms of diabetes have also provided proof-of-principle for precision medicine, and the applicability of this paradigm to complex disease is discussed. Finally, we highlight some of the limitations that are relevant to the use of genome-wide association studies (GWAS) in the search for new therapies for diabetes. A key outstanding challenge is the translation of GWAS signals into disease biology and we outline possible solutions for tackling this experimental bottleneck.
doi_str_mv 10.1007/s00125-017-4270-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5423999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1892722658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-c85de8c6cf83bc61ca276d43e2ea56f00faccda59bab2d5050ceea92281ba4c53</originalsourceid><addsrcrecordid>eNp1kVFr1TAUx4Mo7jr9AL5IwBdfqidp0qY-CGOoEwZ7UMG3cJqedhltck3ayf329u7OsQ2EQB7-v_NPDj_GXgt4LwDqDxlASF2AqAslayh2T9hGqFIWoKR5yjb7uBCm-nXEXuR8BQClVtVzdiSNUrUQesO-ny0TBj5QoNm7zHE9fIodjbyPic-YBpr5NY6-w9nH8JH3PnQ-DDzQHz5fUsKtp3wDdx5bmim_ZM96HDO9ur2P2c8vn3-cnhXnF1-_nZ6cF07VMBfO6I6Mq1xvytZVwqGsq06VJAl11QP06FyHummxlZ0GDY4IGymNaFE5XR6zT4fe7dJO1DkKc8LRbpOfMO1sRG8fJsFf2iFeW61k2TTNWvDutiDF3wvl2U4-OxpHDBSXbIVpZC1lpc2Kvn2EXsUlhXW9PdUYMAbqlRIHyqWYc6L-7jMC7F6ZPSizqzK7V2Z368yb-1vcTfxztALyAOQ1CgOle0__t_Uvu4qj7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899808807</pqid></control><display><type>article</type><title>Human genetics as a model for target validation: finding new therapies for diabetes</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Thomsen, Soren K. ; Gloyn, Anna L.</creator><creatorcontrib>Thomsen, Soren K. ; Gloyn, Anna L.</creatorcontrib><description>Type 2 diabetes is a global epidemic with major effects on healthcare expenditure and quality of life. Currently available treatments are inadequate for the prevention of comorbidities, yet progress towards new therapies remains slow. A major barrier is the insufficiency of traditional preclinical models for predicting drug efficacy and safety. Human genetics offers a complementary model to assess causal mechanisms for target validation. Genetic perturbations are ‘experiments of nature’ that provide a uniquely relevant window into the long-term effects of modulating specific targets. Here, we show that genetic discoveries over the past decades have accurately predicted (now known) therapeutic mechanisms for type 2 diabetes. These findings highlight the potential for use of human genetic variation for prospective target validation, and establish a framework for future applications. Studies into rare, monogenic forms of diabetes have also provided proof-of-principle for precision medicine, and the applicability of this paradigm to complex disease is discussed. Finally, we highlight some of the limitations that are relevant to the use of genome-wide association studies (GWAS) in the search for new therapies for diabetes. A key outstanding challenge is the translation of GWAS signals into disease biology and we outline possible solutions for tackling this experimental bottleneck.</description><identifier>ISSN: 0012-186X</identifier><identifier>EISSN: 1432-0428</identifier><identifier>DOI: 10.1007/s00125-017-4270-y</identifier><identifier>PMID: 28447115</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Diabetes ; Diabetes Mellitus, Type 2 - genetics ; Drug efficacy ; Drug therapy ; Genetic Variation - genetics ; Genetics ; Genome-wide association studies ; Genome-Wide Association Study ; Human Genetics ; Human Physiology ; Humans ; Internal Medicine ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Precision Medicine ; Review</subject><ispartof>Diabetologia, 2017-06, Vol.60 (6), p.960-970</ispartof><rights>The Author(s) 2017</rights><rights>Diabetologia is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-c85de8c6cf83bc61ca276d43e2ea56f00faccda59bab2d5050ceea92281ba4c53</citedby><cites>FETCH-LOGICAL-c470t-c85de8c6cf83bc61ca276d43e2ea56f00faccda59bab2d5050ceea92281ba4c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00125-017-4270-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00125-017-4270-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28447115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomsen, Soren K.</creatorcontrib><creatorcontrib>Gloyn, Anna L.</creatorcontrib><title>Human genetics as a model for target validation: finding new therapies for diabetes</title><title>Diabetologia</title><addtitle>Diabetologia</addtitle><addtitle>Diabetologia</addtitle><description>Type 2 diabetes is a global epidemic with major effects on healthcare expenditure and quality of life. Currently available treatments are inadequate for the prevention of comorbidities, yet progress towards new therapies remains slow. A major barrier is the insufficiency of traditional preclinical models for predicting drug efficacy and safety. Human genetics offers a complementary model to assess causal mechanisms for target validation. Genetic perturbations are ‘experiments of nature’ that provide a uniquely relevant window into the long-term effects of modulating specific targets. Here, we show that genetic discoveries over the past decades have accurately predicted (now known) therapeutic mechanisms for type 2 diabetes. These findings highlight the potential for use of human genetic variation for prospective target validation, and establish a framework for future applications. Studies into rare, monogenic forms of diabetes have also provided proof-of-principle for precision medicine, and the applicability of this paradigm to complex disease is discussed. Finally, we highlight some of the limitations that are relevant to the use of genome-wide association studies (GWAS) in the search for new therapies for diabetes. A key outstanding challenge is the translation of GWAS signals into disease biology and we outline possible solutions for tackling this experimental bottleneck.</description><subject>Animals</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Drug efficacy</subject><subject>Drug therapy</subject><subject>Genetic Variation - genetics</subject><subject>Genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Human Genetics</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Precision Medicine</subject><subject>Review</subject><issn>0012-186X</issn><issn>1432-0428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kVFr1TAUx4Mo7jr9AL5IwBdfqidp0qY-CGOoEwZ7UMG3cJqedhltck3ayf329u7OsQ2EQB7-v_NPDj_GXgt4LwDqDxlASF2AqAslayh2T9hGqFIWoKR5yjb7uBCm-nXEXuR8BQClVtVzdiSNUrUQesO-ny0TBj5QoNm7zHE9fIodjbyPic-YBpr5NY6-w9nH8JH3PnQ-DDzQHz5fUsKtp3wDdx5bmim_ZM96HDO9ur2P2c8vn3-cnhXnF1-_nZ6cF07VMBfO6I6Mq1xvytZVwqGsq06VJAl11QP06FyHummxlZ0GDY4IGymNaFE5XR6zT4fe7dJO1DkKc8LRbpOfMO1sRG8fJsFf2iFeW61k2TTNWvDutiDF3wvl2U4-OxpHDBSXbIVpZC1lpc2Kvn2EXsUlhXW9PdUYMAbqlRIHyqWYc6L-7jMC7F6ZPSizqzK7V2Z368yb-1vcTfxztALyAOQ1CgOle0__t_Uvu4qj7A</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Thomsen, Soren K.</creator><creator>Gloyn, Anna L.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170601</creationdate><title>Human genetics as a model for target validation: finding new therapies for diabetes</title><author>Thomsen, Soren K. ; Gloyn, Anna L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-c85de8c6cf83bc61ca276d43e2ea56f00faccda59bab2d5050ceea92281ba4c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Drug efficacy</topic><topic>Drug therapy</topic><topic>Genetic Variation - genetics</topic><topic>Genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Human Genetics</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Precision Medicine</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomsen, Soren K.</creatorcontrib><creatorcontrib>Gloyn, Anna L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomsen, Soren K.</au><au>Gloyn, Anna L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human genetics as a model for target validation: finding new therapies for diabetes</atitle><jtitle>Diabetologia</jtitle><stitle>Diabetologia</stitle><addtitle>Diabetologia</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>60</volume><issue>6</issue><spage>960</spage><epage>970</epage><pages>960-970</pages><issn>0012-186X</issn><eissn>1432-0428</eissn><abstract>Type 2 diabetes is a global epidemic with major effects on healthcare expenditure and quality of life. Currently available treatments are inadequate for the prevention of comorbidities, yet progress towards new therapies remains slow. A major barrier is the insufficiency of traditional preclinical models for predicting drug efficacy and safety. Human genetics offers a complementary model to assess causal mechanisms for target validation. Genetic perturbations are ‘experiments of nature’ that provide a uniquely relevant window into the long-term effects of modulating specific targets. Here, we show that genetic discoveries over the past decades have accurately predicted (now known) therapeutic mechanisms for type 2 diabetes. These findings highlight the potential for use of human genetic variation for prospective target validation, and establish a framework for future applications. Studies into rare, monogenic forms of diabetes have also provided proof-of-principle for precision medicine, and the applicability of this paradigm to complex disease is discussed. Finally, we highlight some of the limitations that are relevant to the use of genome-wide association studies (GWAS) in the search for new therapies for diabetes. A key outstanding challenge is the translation of GWAS signals into disease biology and we outline possible solutions for tackling this experimental bottleneck.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28447115</pmid><doi>10.1007/s00125-017-4270-y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-186X
ispartof Diabetologia, 2017-06, Vol.60 (6), p.960-970
issn 0012-186X
1432-0428
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5423999
source MEDLINE; SpringerLink Journals
subjects Animals
Diabetes
Diabetes Mellitus, Type 2 - genetics
Drug efficacy
Drug therapy
Genetic Variation - genetics
Genetics
Genome-wide association studies
Genome-Wide Association Study
Human Genetics
Human Physiology
Humans
Internal Medicine
Medicine
Medicine & Public Health
Metabolic Diseases
Precision Medicine
Review
title Human genetics as a model for target validation: finding new therapies for diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20genetics%20as%20a%20model%20for%20target%20validation:%20finding%20new%20therapies%20for%20diabetes&rft.jtitle=Diabetologia&rft.au=Thomsen,%20Soren%20K.&rft.date=2017-06-01&rft.volume=60&rft.issue=6&rft.spage=960&rft.epage=970&rft.pages=960-970&rft.issn=0012-186X&rft.eissn=1432-0428&rft_id=info:doi/10.1007/s00125-017-4270-y&rft_dat=%3Cproquest_pubme%3E1892722658%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899808807&rft_id=info:pmid/28447115&rfr_iscdi=true