Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice
Accumulating evidence has shown the protective role of CD8+ T cells in vaccine-induced immunity against Mycobacterium tuberculosis (Mtb) despite controversy over their role in natural immunity. However, the current vaccine BCG is unable to induce sufficient CD8+ T cell responses, especially in the l...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2017-05, Vol.25 (5), p.1222-1233 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1233 |
---|---|
container_issue | 5 |
container_start_page | 1222 |
container_title | Molecular therapy |
container_volume | 25 |
creator | Hu, Zhidong Wong, Ka-Wing Zhao, Hui-Min Wen, Han-Li Ji, Ping Ma, Hui Wu, Kang Lu, Shui-Hua Li, Feng Li, Zhong-Ming Shu, Tsugumine Xu, Jian-Qing Lowrie, Douglas B. Fan, Xiao-Yong |
description | Accumulating evidence has shown the protective role of CD8+ T cells in vaccine-induced immunity against Mycobacterium tuberculosis (Mtb) despite controversy over their role in natural immunity. However, the current vaccine BCG is unable to induce sufficient CD8+ T cell responses, especially in the lung. Sendai virus, a respiratory RNA virus, is here engineered firstly as a novel recombinant anti-TB vaccine (SeV85AB) that encodes Mtb immuno-dominant antigens, Ag85A and Ag85B. A single mucosal vaccination elicited potent antigen-specific T cell responses and a degree of protection against Mtb challenge similar to the effect of BCG in mice. Depletion of CD8+ T cells abrogated the protective immunity afforded by SeV85AB vaccination. Interestingly, only SeV85AB vaccination induced high levels of lung-resident memory CD8+ T (TRM) cells, and this led to a rapid and strong recall of antigen-specific CD8+ T cell responses against Mtb challenge infection. Furthermore, when used in a BCG prime-SeV85AB boost strategy, SeV85AB vaccine significantly enhanced protection above that seen after BCG vaccination alone. Our findings suggest that CD8+ TRM cells that arise in lungs responding to this mucosal vaccination might help to protect against TB, and SeV85AB holds notable promise to improve BCG’s protective efficacy in a prime-boost immunization regimen.
Hu et al. demonstrate that a Sendai virus-based anti-tuberculosis vaccine, SeV85AB, establishes strong CD8+ resident memory T (TRM) cell immunity in the lung parenchyma when delivered intranasally. This strategy compensates for the weakness of BCG in a prime-boost model and results in markedly enhanced protection against Mycobacterium tuberculosis challenge. |
doi_str_mv | 10.1016/j.ymthe.2017.02.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5417795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001617300989</els_id><sourcerecordid>2198013304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-48f3da0d74af8b6621e474ab1ae503e19f3390e1c3f7ecf903af87fbe45b29353</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSNERUvhCZCQJTZsEvyXvwVITGhLpRlRwdCt5Tg3Mx4ldrGdSvMKPAXPwpPV02lHwIKVr-TvHp_jkySvCM4IJsW7TbYdwxoyikmZYZphUj1JTkhO8xRjyp8eZlIcJ8-938SJ5HXxLDmmFeO0YPVJ8vMbmE5qdK3d5NFiUtbLAV1LpbSRQVuDznyQ7aD9GjyaT2aVfgWvOzABLWC0bouaT9XvX0vUwDCgy3GcjA5bJE2HZtb64NGsuUivnB6hQ1fOBlD3snIltfEBLWdIG7TQCl4kR70cPLx8OE-T7-dny-ZzOv9ycdl8nKeKV2VIedWzTuKu5LKv2qKgBHicWyIhxwxI3TNWYyCK9SWovsYscmXfAs9bWrOcnSYf9ro3UxtNqRjFyUHcRIvSbYWVWvx9Y_RarOytyDkpy3on8PZBwNkfE_ggRu1VjC8N2MkLUlWE86IsaUTf_INu7ORMjCcoqStMGMM8UmxPKWe9d9AfzBAsdl2LjbjvWuy6FpiK2HXcev1njsPOY7kReL8HIP7mrQYnvNJgFHTaxRZEZ_V_H7gDqwG92w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198013304</pqid></control><display><type>article</type><title>Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hu, Zhidong ; Wong, Ka-Wing ; Zhao, Hui-Min ; Wen, Han-Li ; Ji, Ping ; Ma, Hui ; Wu, Kang ; Lu, Shui-Hua ; Li, Feng ; Li, Zhong-Ming ; Shu, Tsugumine ; Xu, Jian-Qing ; Lowrie, Douglas B. ; Fan, Xiao-Yong</creator><creatorcontrib>Hu, Zhidong ; Wong, Ka-Wing ; Zhao, Hui-Min ; Wen, Han-Li ; Ji, Ping ; Ma, Hui ; Wu, Kang ; Lu, Shui-Hua ; Li, Feng ; Li, Zhong-Ming ; Shu, Tsugumine ; Xu, Jian-Qing ; Lowrie, Douglas B. ; Fan, Xiao-Yong</creatorcontrib><description>Accumulating evidence has shown the protective role of CD8+ T cells in vaccine-induced immunity against Mycobacterium tuberculosis (Mtb) despite controversy over their role in natural immunity. However, the current vaccine BCG is unable to induce sufficient CD8+ T cell responses, especially in the lung. Sendai virus, a respiratory RNA virus, is here engineered firstly as a novel recombinant anti-TB vaccine (SeV85AB) that encodes Mtb immuno-dominant antigens, Ag85A and Ag85B. A single mucosal vaccination elicited potent antigen-specific T cell responses and a degree of protection against Mtb challenge similar to the effect of BCG in mice. Depletion of CD8+ T cells abrogated the protective immunity afforded by SeV85AB vaccination. Interestingly, only SeV85AB vaccination induced high levels of lung-resident memory CD8+ T (TRM) cells, and this led to a rapid and strong recall of antigen-specific CD8+ T cell responses against Mtb challenge infection. Furthermore, when used in a BCG prime-SeV85AB boost strategy, SeV85AB vaccine significantly enhanced protection above that seen after BCG vaccination alone. Our findings suggest that CD8+ TRM cells that arise in lungs responding to this mucosal vaccination might help to protect against TB, and SeV85AB holds notable promise to improve BCG’s protective efficacy in a prime-boost immunization regimen.
Hu et al. demonstrate that a Sendai virus-based anti-tuberculosis vaccine, SeV85AB, establishes strong CD8+ resident memory T (TRM) cell immunity in the lung parenchyma when delivered intranasally. This strategy compensates for the weakness of BCG in a prime-boost model and results in markedly enhanced protection against Mycobacterium tuberculosis challenge.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2017.02.018</identifier><identifier>PMID: 28342639</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acyltransferases - genetics ; Acyltransferases - immunology ; Animals ; Antigens ; Antigens, Bacterial - genetics ; Antigens, Bacterial - immunology ; Bacillus Calmette-Guerin vaccine ; Bacterial Load ; Bacterial Proteins - genetics ; Bacterial Proteins - immunology ; BCG ; BCG Vaccine - administration & dosage ; CD8 antigen ; CD8+ T cell responses ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - microbiology ; Disease Models, Animal ; Female ; Gene Expression ; Genetic Engineering ; Immunity ; Immunity, Mucosal ; Immunization, Secondary - methods ; Immunogenicity, Vaccine ; Immunologic Memory ; Immunological memory ; Infections ; Lung - immunology ; Lung - microbiology ; Lungs ; Lymphatic system ; Lymphocyte Depletion ; Lymphocytes ; Lymphocytes T ; Memory cells ; Mice ; Mice, Inbred BALB C ; Mucosa ; mucosal immunity ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - immunology ; Mycobacterium tuberculosis - pathogenicity ; Original ; Peptides ; prime boost ; resident memory T cells ; Respiratory Mucosa - immunology ; Respiratory Mucosa - microbiology ; RNA viruses ; Sendai virus ; Sendai virus - genetics ; Sendai virus - immunology ; Spleen ; TB vaccine ; Tuberculosis ; Tuberculosis, Pulmonary - immunology ; Tuberculosis, Pulmonary - microbiology ; Tuberculosis, Pulmonary - prevention & control ; Vaccination ; Vaccination - methods ; Vaccines</subject><ispartof>Molecular therapy, 2017-05, Vol.25 (5), p.1222-1233</ispartof><rights>2017 The Author(s)</rights><rights>Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2017. The Author(s)</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-48f3da0d74af8b6621e474ab1ae503e19f3390e1c3f7ecf903af87fbe45b29353</citedby><cites>FETCH-LOGICAL-c487t-48f3da0d74af8b6621e474ab1ae503e19f3390e1c3f7ecf903af87fbe45b29353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417795/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5417795/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28342639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Zhidong</creatorcontrib><creatorcontrib>Wong, Ka-Wing</creatorcontrib><creatorcontrib>Zhao, Hui-Min</creatorcontrib><creatorcontrib>Wen, Han-Li</creatorcontrib><creatorcontrib>Ji, Ping</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Wu, Kang</creatorcontrib><creatorcontrib>Lu, Shui-Hua</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Li, Zhong-Ming</creatorcontrib><creatorcontrib>Shu, Tsugumine</creatorcontrib><creatorcontrib>Xu, Jian-Qing</creatorcontrib><creatorcontrib>Lowrie, Douglas B.</creatorcontrib><creatorcontrib>Fan, Xiao-Yong</creatorcontrib><title>Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Accumulating evidence has shown the protective role of CD8+ T cells in vaccine-induced immunity against Mycobacterium tuberculosis (Mtb) despite controversy over their role in natural immunity. However, the current vaccine BCG is unable to induce sufficient CD8+ T cell responses, especially in the lung. Sendai virus, a respiratory RNA virus, is here engineered firstly as a novel recombinant anti-TB vaccine (SeV85AB) that encodes Mtb immuno-dominant antigens, Ag85A and Ag85B. A single mucosal vaccination elicited potent antigen-specific T cell responses and a degree of protection against Mtb challenge similar to the effect of BCG in mice. Depletion of CD8+ T cells abrogated the protective immunity afforded by SeV85AB vaccination. Interestingly, only SeV85AB vaccination induced high levels of lung-resident memory CD8+ T (TRM) cells, and this led to a rapid and strong recall of antigen-specific CD8+ T cell responses against Mtb challenge infection. Furthermore, when used in a BCG prime-SeV85AB boost strategy, SeV85AB vaccine significantly enhanced protection above that seen after BCG vaccination alone. Our findings suggest that CD8+ TRM cells that arise in lungs responding to this mucosal vaccination might help to protect against TB, and SeV85AB holds notable promise to improve BCG’s protective efficacy in a prime-boost immunization regimen.
Hu et al. demonstrate that a Sendai virus-based anti-tuberculosis vaccine, SeV85AB, establishes strong CD8+ resident memory T (TRM) cell immunity in the lung parenchyma when delivered intranasally. This strategy compensates for the weakness of BCG in a prime-boost model and results in markedly enhanced protection against Mycobacterium tuberculosis challenge.</description><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - immunology</subject><subject>Animals</subject><subject>Antigens</subject><subject>Antigens, Bacterial - genetics</subject><subject>Antigens, Bacterial - immunology</subject><subject>Bacillus Calmette-Guerin vaccine</subject><subject>Bacterial Load</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - immunology</subject><subject>BCG</subject><subject>BCG Vaccine - administration & dosage</subject><subject>CD8 antigen</subject><subject>CD8+ T cell responses</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - microbiology</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Gene Expression</subject><subject>Genetic Engineering</subject><subject>Immunity</subject><subject>Immunity, Mucosal</subject><subject>Immunization, Secondary - methods</subject><subject>Immunogenicity, Vaccine</subject><subject>Immunologic Memory</subject><subject>Immunological memory</subject><subject>Infections</subject><subject>Lung - immunology</subject><subject>Lung - microbiology</subject><subject>Lungs</subject><subject>Lymphatic system</subject><subject>Lymphocyte Depletion</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Memory cells</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mucosa</subject><subject>mucosal immunity</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - immunology</subject><subject>Mycobacterium tuberculosis - pathogenicity</subject><subject>Original</subject><subject>Peptides</subject><subject>prime boost</subject><subject>resident memory T cells</subject><subject>Respiratory Mucosa - immunology</subject><subject>Respiratory Mucosa - microbiology</subject><subject>RNA viruses</subject><subject>Sendai virus</subject><subject>Sendai virus - genetics</subject><subject>Sendai virus - immunology</subject><subject>Spleen</subject><subject>TB vaccine</subject><subject>Tuberculosis</subject><subject>Tuberculosis, Pulmonary - immunology</subject><subject>Tuberculosis, Pulmonary - microbiology</subject><subject>Tuberculosis, Pulmonary - prevention & control</subject><subject>Vaccination</subject><subject>Vaccination - methods</subject><subject>Vaccines</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc1u1DAUhSNERUvhCZCQJTZsEvyXvwVITGhLpRlRwdCt5Tg3Mx4ldrGdSvMKPAXPwpPV02lHwIKVr-TvHp_jkySvCM4IJsW7TbYdwxoyikmZYZphUj1JTkhO8xRjyp8eZlIcJ8-938SJ5HXxLDmmFeO0YPVJ8vMbmE5qdK3d5NFiUtbLAV1LpbSRQVuDznyQ7aD9GjyaT2aVfgWvOzABLWC0bouaT9XvX0vUwDCgy3GcjA5bJE2HZtb64NGsuUivnB6hQ1fOBlD3snIltfEBLWdIG7TQCl4kR70cPLx8OE-T7-dny-ZzOv9ycdl8nKeKV2VIedWzTuKu5LKv2qKgBHicWyIhxwxI3TNWYyCK9SWovsYscmXfAs9bWrOcnSYf9ro3UxtNqRjFyUHcRIvSbYWVWvx9Y_RarOytyDkpy3on8PZBwNkfE_ggRu1VjC8N2MkLUlWE86IsaUTf_INu7ORMjCcoqStMGMM8UmxPKWe9d9AfzBAsdl2LjbjvWuy6FpiK2HXcev1njsPOY7kReL8HIP7mrQYnvNJgFHTaxRZEZ_V_H7gDqwG92w</recordid><startdate>20170503</startdate><enddate>20170503</enddate><creator>Hu, Zhidong</creator><creator>Wong, Ka-Wing</creator><creator>Zhao, Hui-Min</creator><creator>Wen, Han-Li</creator><creator>Ji, Ping</creator><creator>Ma, Hui</creator><creator>Wu, Kang</creator><creator>Lu, Shui-Hua</creator><creator>Li, Feng</creator><creator>Li, Zhong-Ming</creator><creator>Shu, Tsugumine</creator><creator>Xu, Jian-Qing</creator><creator>Lowrie, Douglas B.</creator><creator>Fan, Xiao-Yong</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene & Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170503</creationdate><title>Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice</title><author>Hu, Zhidong ; Wong, Ka-Wing ; Zhao, Hui-Min ; Wen, Han-Li ; Ji, Ping ; Ma, Hui ; Wu, Kang ; Lu, Shui-Hua ; Li, Feng ; Li, Zhong-Ming ; Shu, Tsugumine ; Xu, Jian-Qing ; Lowrie, Douglas B. ; Fan, Xiao-Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-48f3da0d74af8b6621e474ab1ae503e19f3390e1c3f7ecf903af87fbe45b29353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - immunology</topic><topic>Animals</topic><topic>Antigens</topic><topic>Antigens, Bacterial - genetics</topic><topic>Antigens, Bacterial - immunology</topic><topic>Bacillus Calmette-Guerin vaccine</topic><topic>Bacterial Load</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - immunology</topic><topic>BCG</topic><topic>BCG Vaccine - administration & dosage</topic><topic>CD8 antigen</topic><topic>CD8+ T cell responses</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - microbiology</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Gene Expression</topic><topic>Genetic Engineering</topic><topic>Immunity</topic><topic>Immunity, Mucosal</topic><topic>Immunization, Secondary - methods</topic><topic>Immunogenicity, Vaccine</topic><topic>Immunologic Memory</topic><topic>Immunological memory</topic><topic>Infections</topic><topic>Lung - immunology</topic><topic>Lung - microbiology</topic><topic>Lungs</topic><topic>Lymphatic system</topic><topic>Lymphocyte Depletion</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Memory cells</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mucosa</topic><topic>mucosal immunity</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - immunology</topic><topic>Mycobacterium tuberculosis - pathogenicity</topic><topic>Original</topic><topic>Peptides</topic><topic>prime boost</topic><topic>resident memory T cells</topic><topic>Respiratory Mucosa - immunology</topic><topic>Respiratory Mucosa - microbiology</topic><topic>RNA viruses</topic><topic>Sendai virus</topic><topic>Sendai virus - genetics</topic><topic>Sendai virus - immunology</topic><topic>Spleen</topic><topic>TB vaccine</topic><topic>Tuberculosis</topic><topic>Tuberculosis, Pulmonary - immunology</topic><topic>Tuberculosis, Pulmonary - microbiology</topic><topic>Tuberculosis, Pulmonary - prevention & control</topic><topic>Vaccination</topic><topic>Vaccination - methods</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zhidong</creatorcontrib><creatorcontrib>Wong, Ka-Wing</creatorcontrib><creatorcontrib>Zhao, Hui-Min</creatorcontrib><creatorcontrib>Wen, Han-Li</creatorcontrib><creatorcontrib>Ji, Ping</creatorcontrib><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Wu, Kang</creatorcontrib><creatorcontrib>Lu, Shui-Hua</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Li, Zhong-Ming</creatorcontrib><creatorcontrib>Shu, Tsugumine</creatorcontrib><creatorcontrib>Xu, Jian-Qing</creatorcontrib><creatorcontrib>Lowrie, Douglas B.</creatorcontrib><creatorcontrib>Fan, Xiao-Yong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zhidong</au><au>Wong, Ka-Wing</au><au>Zhao, Hui-Min</au><au>Wen, Han-Li</au><au>Ji, Ping</au><au>Ma, Hui</au><au>Wu, Kang</au><au>Lu, Shui-Hua</au><au>Li, Feng</au><au>Li, Zhong-Ming</au><au>Shu, Tsugumine</au><au>Xu, Jian-Qing</au><au>Lowrie, Douglas B.</au><au>Fan, Xiao-Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2017-05-03</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>1222</spage><epage>1233</epage><pages>1222-1233</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Accumulating evidence has shown the protective role of CD8+ T cells in vaccine-induced immunity against Mycobacterium tuberculosis (Mtb) despite controversy over their role in natural immunity. However, the current vaccine BCG is unable to induce sufficient CD8+ T cell responses, especially in the lung. Sendai virus, a respiratory RNA virus, is here engineered firstly as a novel recombinant anti-TB vaccine (SeV85AB) that encodes Mtb immuno-dominant antigens, Ag85A and Ag85B. A single mucosal vaccination elicited potent antigen-specific T cell responses and a degree of protection against Mtb challenge similar to the effect of BCG in mice. Depletion of CD8+ T cells abrogated the protective immunity afforded by SeV85AB vaccination. Interestingly, only SeV85AB vaccination induced high levels of lung-resident memory CD8+ T (TRM) cells, and this led to a rapid and strong recall of antigen-specific CD8+ T cell responses against Mtb challenge infection. Furthermore, when used in a BCG prime-SeV85AB boost strategy, SeV85AB vaccine significantly enhanced protection above that seen after BCG vaccination alone. Our findings suggest that CD8+ TRM cells that arise in lungs responding to this mucosal vaccination might help to protect against TB, and SeV85AB holds notable promise to improve BCG’s protective efficacy in a prime-boost immunization regimen.
Hu et al. demonstrate that a Sendai virus-based anti-tuberculosis vaccine, SeV85AB, establishes strong CD8+ resident memory T (TRM) cell immunity in the lung parenchyma when delivered intranasally. This strategy compensates for the weakness of BCG in a prime-boost model and results in markedly enhanced protection against Mycobacterium tuberculosis challenge.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28342639</pmid><doi>10.1016/j.ymthe.2017.02.018</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-0016 |
ispartof | Molecular therapy, 2017-05, Vol.25 (5), p.1222-1233 |
issn | 1525-0016 1525-0024 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5417795 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Acyltransferases - genetics Acyltransferases - immunology Animals Antigens Antigens, Bacterial - genetics Antigens, Bacterial - immunology Bacillus Calmette-Guerin vaccine Bacterial Load Bacterial Proteins - genetics Bacterial Proteins - immunology BCG BCG Vaccine - administration & dosage CD8 antigen CD8+ T cell responses CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - microbiology Disease Models, Animal Female Gene Expression Genetic Engineering Immunity Immunity, Mucosal Immunization, Secondary - methods Immunogenicity, Vaccine Immunologic Memory Immunological memory Infections Lung - immunology Lung - microbiology Lungs Lymphatic system Lymphocyte Depletion Lymphocytes Lymphocytes T Memory cells Mice Mice, Inbred BALB C Mucosa mucosal immunity Mycobacterium tuberculosis Mycobacterium tuberculosis - immunology Mycobacterium tuberculosis - pathogenicity Original Peptides prime boost resident memory T cells Respiratory Mucosa - immunology Respiratory Mucosa - microbiology RNA viruses Sendai virus Sendai virus - genetics Sendai virus - immunology Spleen TB vaccine Tuberculosis Tuberculosis, Pulmonary - immunology Tuberculosis, Pulmonary - microbiology Tuberculosis, Pulmonary - prevention & control Vaccination Vaccination - methods Vaccines |
title | Sendai Virus Mucosal Vaccination Establishes Lung-Resident Memory CD8 T Cell Immunity and Boosts BCG-Primed Protection against TB in Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sendai%20Virus%20Mucosal%20Vaccination%20Establishes%20Lung-Resident%20Memory%20CD8%C2%A0T%20Cell%20Immunity%20and%20Boosts%20BCG-Primed%20Protection%20against%20TB%20in%20Mice&rft.jtitle=Molecular%20therapy&rft.au=Hu,%20Zhidong&rft.date=2017-05-03&rft.volume=25&rft.issue=5&rft.spage=1222&rft.epage=1233&rft.pages=1222-1233&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2017.02.018&rft_dat=%3Cproquest_pubme%3E2198013304%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2198013304&rft_id=info:pmid/28342639&rft_els_id=S1525001617300989&rfr_iscdi=true |