Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation
The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanical engineering 2012-06, Vol.134 (6), p.061004-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 6 |
container_start_page | 061004 |
container_title | Journal of biomechanical engineering |
container_volume | 134 |
creator | Namani, R Feng, Y Okamoto, R. J Jesuraj, N Sakiyama-Elbert, S. E Genin, G. M Bayly, P. V |
description | The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. |
doi_str_mv | 10.1115/1.4006848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5413127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1023533071</sourcerecordid><originalsourceid>FETCH-LOGICAL-a458t-f09f3abe650cf807fc9a987002fbb8d89e254da2dbf78d731c2e9078e031f6b33</originalsourceid><addsrcrecordid>eNqFkUFv1DAQRi0EokvhwBkJ5YJEDykzdrx2LpWqpYWVijhQztbEsdlUSbzY2Urh1-NllwInTpZm3jx7_DH2EuEcEeU7PK8AlrrSj9gCJdelriU-ZgvASpegBJ6wZyndASDqCp6yE86VVBJwwYarntLU2WK1oUh2crH7QVMXxiL44jbSmO5dTK6fi3UKUwzbjH4Jfio-0Z6lPhXNXLyfRxr2nY2jWNDYFpdpHgY3xVxcj60bp1_S5-yJzyPuxfE8ZV-vr25XH8ubzx_Wq8ubkiqpp9JD7QU1binBeg3K25pqrQC4bxrd6tpxWbXE28Yr3eb9LHc1KO1AoF82Qpyyi4N3u2sG19p8f6TebGM3UJxNoM782xm7jfkW7o2sUCBXWfD2KIjh-86lyQxdsq7vaXRhlwxK5IILVcn_o8CFFAIUZvTsgNoYUorOP7wIweyTNGiOSWb29d8rPJC_o8vAmyNAyVLvc1a2S3-4JSrB1V706sBRGpy5C7s45q83FVdcavETr0CwZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023533071</pqid></control><display><type>article</type><title>Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation</title><source>ASME Transactions Journals</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Namani, R ; Feng, Y ; Okamoto, R. J ; Jesuraj, N ; Sakiyama-Elbert, S. E ; Genin, G. M ; Bayly, P. V</creator><creatorcontrib>Namani, R ; Feng, Y ; Okamoto, R. J ; Jesuraj, N ; Sakiyama-Elbert, S. E ; Genin, G. M ; Bayly, P. V</creatorcontrib><description>The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material.</description><identifier>ISSN: 0148-0731</identifier><identifier>ISSN: 1528-8951</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.4006848</identifier><identifier>PMID: 22757501</identifier><identifier>CODEN: JBENDY</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Anisotropy ; Biological and medical sciences ; Elasticity ; Fibrin ; Finite Element Analysis ; Gels ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Linear Models ; Materials Testing - methods ; Medical sciences ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Rotation ; Shear Strength ; Technical Brief</subject><ispartof>Journal of biomechanical engineering, 2012-06, Vol.134 (6), p.061004-11</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 by ASME 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a458t-f09f3abe650cf807fc9a987002fbb8d89e254da2dbf78d731c2e9078e031f6b33</citedby><cites>FETCH-LOGICAL-a458t-f09f3abe650cf807fc9a987002fbb8d89e254da2dbf78d731c2e9078e031f6b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906,38501</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26173278$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22757501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Namani, R</creatorcontrib><creatorcontrib>Feng, Y</creatorcontrib><creatorcontrib>Okamoto, R. J</creatorcontrib><creatorcontrib>Jesuraj, N</creatorcontrib><creatorcontrib>Sakiyama-Elbert, S. E</creatorcontrib><creatorcontrib>Genin, G. M</creatorcontrib><creatorcontrib>Bayly, P. V</creatorcontrib><title>Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material.</description><subject>Anisotropy</subject><subject>Biological and medical sciences</subject><subject>Elasticity</subject><subject>Fibrin</subject><subject>Finite Element Analysis</subject><subject>Gels</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Linear Models</subject><subject>Materials Testing - methods</subject><subject>Medical sciences</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Rotation</subject><subject>Shear Strength</subject><subject>Technical Brief</subject><issn>0148-0731</issn><issn>1528-8951</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQRi0EokvhwBkJ5YJEDykzdrx2LpWqpYWVijhQztbEsdlUSbzY2Urh1-NllwInTpZm3jx7_DH2EuEcEeU7PK8AlrrSj9gCJdelriU-ZgvASpegBJ6wZyndASDqCp6yE86VVBJwwYarntLU2WK1oUh2crH7QVMXxiL44jbSmO5dTK6fi3UKUwzbjH4Jfio-0Z6lPhXNXLyfRxr2nY2jWNDYFpdpHgY3xVxcj60bp1_S5-yJzyPuxfE8ZV-vr25XH8ubzx_Wq8ubkiqpp9JD7QU1binBeg3K25pqrQC4bxrd6tpxWbXE28Yr3eb9LHc1KO1AoF82Qpyyi4N3u2sG19p8f6TebGM3UJxNoM782xm7jfkW7o2sUCBXWfD2KIjh-86lyQxdsq7vaXRhlwxK5IILVcn_o8CFFAIUZvTsgNoYUorOP7wIweyTNGiOSWb29d8rPJC_o8vAmyNAyVLvc1a2S3-4JSrB1V706sBRGpy5C7s45q83FVdcavETr0CwZQ</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Namani, R</creator><creator>Feng, Y</creator><creator>Okamoto, R. J</creator><creator>Jesuraj, N</creator><creator>Sakiyama-Elbert, S. E</creator><creator>Genin, G. M</creator><creator>Bayly, P. V</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20120601</creationdate><title>Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation</title><author>Namani, R ; Feng, Y ; Okamoto, R. J ; Jesuraj, N ; Sakiyama-Elbert, S. E ; Genin, G. M ; Bayly, P. V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a458t-f09f3abe650cf807fc9a987002fbb8d89e254da2dbf78d731c2e9078e031f6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Anisotropy</topic><topic>Biological and medical sciences</topic><topic>Elasticity</topic><topic>Fibrin</topic><topic>Finite Element Analysis</topic><topic>Gels</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Linear Models</topic><topic>Materials Testing - methods</topic><topic>Medical sciences</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Rotation</topic><topic>Shear Strength</topic><topic>Technical Brief</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namani, R</creatorcontrib><creatorcontrib>Feng, Y</creatorcontrib><creatorcontrib>Okamoto, R. J</creatorcontrib><creatorcontrib>Jesuraj, N</creatorcontrib><creatorcontrib>Sakiyama-Elbert, S. E</creatorcontrib><creatorcontrib>Genin, G. M</creatorcontrib><creatorcontrib>Bayly, P. V</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namani, R</au><au>Feng, Y</au><au>Okamoto, R. J</au><au>Jesuraj, N</au><au>Sakiyama-Elbert, S. E</au><au>Genin, G. M</au><au>Bayly, P. V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2012-06-01</date><risdate>2012</risdate><volume>134</volume><issue>6</issue><spage>061004</spage><epage>11</epage><pages>061004-11</pages><issn>0148-0731</issn><issn>1528-8951</issn><eissn>1528-8951</eissn><coden>JBENDY</coden><abstract>The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material.</abstract><cop>New York, NY</cop><pub>ASME</pub><pmid>22757501</pmid><doi>10.1115/1.4006848</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0731 |
ispartof | Journal of biomechanical engineering, 2012-06, Vol.134 (6), p.061004-11 |
issn | 0148-0731 1528-8951 1528-8951 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5413127 |
source | ASME Transactions Journals; MEDLINE; Alma/SFX Local Collection |
subjects | Anisotropy Biological and medical sciences Elasticity Fibrin Finite Element Analysis Gels Humans Investigative techniques, diagnostic techniques (general aspects) Linear Models Materials Testing - methods Medical sciences Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Rotation Shear Strength Technical Brief |
title | Elastic Characterization of Transversely Isotropic Soft Materials by Dynamic Shear and Asymmetric Indentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastic%20Characterization%20of%20Transversely%20Isotropic%20Soft%20Materials%20by%20Dynamic%20Shear%20and%20Asymmetric%20Indentation&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Namani,%20R&rft.date=2012-06-01&rft.volume=134&rft.issue=6&rft.spage=061004&rft.epage=11&rft.pages=061004-11&rft.issn=0148-0731&rft.eissn=1528-8951&rft.coden=JBENDY&rft_id=info:doi/10.1115/1.4006848&rft_dat=%3Cproquest_pubme%3E1023533071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023533071&rft_id=info:pmid/22757501&rfr_iscdi=true |