Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?
Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of...
Gespeichert in:
Veröffentlicht in: | Nutrients 2017-03, Vol.9 (4), p.344 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 344 |
container_title | Nutrients |
container_volume | 9 |
creator | Gonzalez, Javier T Fuchs, Cas J Betts, James A van Loon, Luc J C |
description | Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass
·h
can enhance glycogen repletion rates whilst also minimising gastrointestinal distress. |
doi_str_mv | 10.3390/nu9040344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286937755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4174-e1ac57caf3dee34a02ed5e5627e7053afb7a4f5b824c9e65e4ca6aa1c89e98313</originalsourceid><addsrcrecordid>eNqFkUtLI0EQx5tF2Uj0sF9gadiLexjt9-Oyi4QkBgTDPo5L0-nU6Mhk2u2elvXbOyEadC_WoR7Uj6Kq_gh9ouSMc0vOu2KJIFyID-iIEc0qpQQ_eJWP0EnOd2RrmmjFP6IRM1wazsUR-jNvS4gZ8LItGc9SCf22WnQ3kPsmdriOCS9j7qvpP0ihGXo_IMQHSI_VPIHvIeH-1neDA_yzbHCs8aLPeOlTn78fo8PatxlOnuMY_Z5Nf00uq6vr-WJycVUFQbWogPogdfA1XwNw4QmDtQSpmAZNJPf1SntRy5VhIlhQEkTwynsajAVrOOVj9G03976sNrAO0PXJt-4-NRufHl30jXvb6ZpbdxMfnBTEquETY3T6PCDFv2U43W2aHKBtfQexZMeYUZZrLeW7KDWGSUI53aJf_kPvYknd8ImBstZQo7QZqK87KqSYc4J6vzclbiux20s8sJ9fH7onXwTlT4NkoTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899818678</pqid></control><display><type>article</type><title>Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gonzalez, Javier T ; Fuchs, Cas J ; Betts, James A ; van Loon, Luc J C</creator><creatorcontrib>Gonzalez, Javier T ; Fuchs, Cas J ; Betts, James A ; van Loon, Luc J C</creatorcontrib><description>Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass
·h
can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu9040344</identifier><identifier>PMID: 28358334</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorption ; Athletic Performance ; Blood Glucose - metabolism ; Carbohydrates ; Dietary Carbohydrates - administration & dosage ; Disaccharides ; distress ; Endurance ; Exercise ; fatigue strength ; Fructose ; Fructose - administration & dosage ; Glucose ; Glucose - administration & dosage ; glycogen ; Glycogen - metabolism ; Humans ; hydrolysis ; Ingestion ; intestinal absorption ; intestines ; Liver ; Liver - metabolism ; Muscle, Skeletal - metabolism ; Muscles ; Polymers ; repletion ; Review ; Sports Nutritional Physiological Phenomena ; Sucrose ; Transport ; transport proteins</subject><ispartof>Nutrients, 2017-03, Vol.9 (4), p.344</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4174-e1ac57caf3dee34a02ed5e5627e7053afb7a4f5b824c9e65e4ca6aa1c89e98313</citedby><cites>FETCH-LOGICAL-c4174-e1ac57caf3dee34a02ed5e5627e7053afb7a4f5b824c9e65e4ca6aa1c89e98313</cites><orcidid>0000-0002-3401-465X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409683/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409683/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28358334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonzalez, Javier T</creatorcontrib><creatorcontrib>Fuchs, Cas J</creatorcontrib><creatorcontrib>Betts, James A</creatorcontrib><creatorcontrib>van Loon, Luc J C</creatorcontrib><title>Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass
·h
can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.</description><subject>Absorption</subject><subject>Athletic Performance</subject><subject>Blood Glucose - metabolism</subject><subject>Carbohydrates</subject><subject>Dietary Carbohydrates - administration & dosage</subject><subject>Disaccharides</subject><subject>distress</subject><subject>Endurance</subject><subject>Exercise</subject><subject>fatigue strength</subject><subject>Fructose</subject><subject>Fructose - administration & dosage</subject><subject>Glucose</subject><subject>Glucose - administration & dosage</subject><subject>glycogen</subject><subject>Glycogen - metabolism</subject><subject>Humans</subject><subject>hydrolysis</subject><subject>Ingestion</subject><subject>intestinal absorption</subject><subject>intestines</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Polymers</subject><subject>repletion</subject><subject>Review</subject><subject>Sports Nutritional Physiological Phenomena</subject><subject>Sucrose</subject><subject>Transport</subject><subject>transport proteins</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkUtLI0EQx5tF2Uj0sF9gadiLexjt9-Oyi4QkBgTDPo5L0-nU6Mhk2u2elvXbOyEadC_WoR7Uj6Kq_gh9ouSMc0vOu2KJIFyID-iIEc0qpQQ_eJWP0EnOd2RrmmjFP6IRM1wazsUR-jNvS4gZ8LItGc9SCf22WnQ3kPsmdriOCS9j7qvpP0ihGXo_IMQHSI_VPIHvIeH-1neDA_yzbHCs8aLPeOlTn78fo8PatxlOnuMY_Z5Nf00uq6vr-WJycVUFQbWogPogdfA1XwNw4QmDtQSpmAZNJPf1SntRy5VhIlhQEkTwynsajAVrOOVj9G03976sNrAO0PXJt-4-NRufHl30jXvb6ZpbdxMfnBTEquETY3T6PCDFv2U43W2aHKBtfQexZMeYUZZrLeW7KDWGSUI53aJf_kPvYknd8ImBstZQo7QZqK87KqSYc4J6vzclbiux20s8sJ9fH7onXwTlT4NkoTQ</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Gonzalez, Javier T</creator><creator>Fuchs, Cas J</creator><creator>Betts, James A</creator><creator>van Loon, Luc J C</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3401-465X</orcidid></search><sort><creationdate>20170330</creationdate><title>Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?</title><author>Gonzalez, Javier T ; Fuchs, Cas J ; Betts, James A ; van Loon, Luc J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4174-e1ac57caf3dee34a02ed5e5627e7053afb7a4f5b824c9e65e4ca6aa1c89e98313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Athletic Performance</topic><topic>Blood Glucose - metabolism</topic><topic>Carbohydrates</topic><topic>Dietary Carbohydrates - administration & dosage</topic><topic>Disaccharides</topic><topic>distress</topic><topic>Endurance</topic><topic>Exercise</topic><topic>fatigue strength</topic><topic>Fructose</topic><topic>Fructose - administration & dosage</topic><topic>Glucose</topic><topic>Glucose - administration & dosage</topic><topic>glycogen</topic><topic>Glycogen - metabolism</topic><topic>Humans</topic><topic>hydrolysis</topic><topic>Ingestion</topic><topic>intestinal absorption</topic><topic>intestines</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Polymers</topic><topic>repletion</topic><topic>Review</topic><topic>Sports Nutritional Physiological Phenomena</topic><topic>Sucrose</topic><topic>Transport</topic><topic>transport proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Javier T</creatorcontrib><creatorcontrib>Fuchs, Cas J</creatorcontrib><creatorcontrib>Betts, James A</creatorcontrib><creatorcontrib>van Loon, Luc J C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Javier T</au><au>Fuchs, Cas J</au><au>Betts, James A</au><au>van Loon, Luc J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>9</volume><issue>4</issue><spage>344</spage><pages>344-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass
·h
can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28358334</pmid><doi>10.3390/nu9040344</doi><orcidid>https://orcid.org/0000-0002-3401-465X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-6643 |
ispartof | Nutrients, 2017-03, Vol.9 (4), p.344 |
issn | 2072-6643 2072-6643 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409683 |
source | MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Absorption Athletic Performance Blood Glucose - metabolism Carbohydrates Dietary Carbohydrates - administration & dosage Disaccharides distress Endurance Exercise fatigue strength Fructose Fructose - administration & dosage Glucose Glucose - administration & dosage glycogen Glycogen - metabolism Humans hydrolysis Ingestion intestinal absorption intestines Liver Liver - metabolism Muscle, Skeletal - metabolism Muscles Polymers repletion Review Sports Nutritional Physiological Phenomena Sucrose Transport transport proteins |
title | Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose%20Plus%20Fructose%20Ingestion%20for%20Post-Exercise%20Recovery-Greater%20than%20the%20Sum%20of%20Its%20Parts?&rft.jtitle=Nutrients&rft.au=Gonzalez,%20Javier%20T&rft.date=2017-03-30&rft.volume=9&rft.issue=4&rft.spage=344&rft.pages=344-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu9040344&rft_dat=%3Cproquest_pubme%3E2286937755%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899818678&rft_id=info:pmid/28358334&rfr_iscdi=true |