Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?

Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2017-03, Vol.9 (4), p.344
Hauptverfasser: Gonzalez, Javier T, Fuchs, Cas J, Betts, James A, van Loon, Luc J C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 344
container_title Nutrients
container_volume 9
creator Gonzalez, Javier T
Fuchs, Cas J
Betts, James A
van Loon, Luc J C
description Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass ·h can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.
doi_str_mv 10.3390/nu9040344
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2286937755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4174-e1ac57caf3dee34a02ed5e5627e7053afb7a4f5b824c9e65e4ca6aa1c89e98313</originalsourceid><addsrcrecordid>eNqFkUtLI0EQx5tF2Uj0sF9gadiLexjt9-Oyi4QkBgTDPo5L0-nU6Mhk2u2elvXbOyEadC_WoR7Uj6Kq_gh9ouSMc0vOu2KJIFyID-iIEc0qpQQ_eJWP0EnOd2RrmmjFP6IRM1wazsUR-jNvS4gZ8LItGc9SCf22WnQ3kPsmdriOCS9j7qvpP0ihGXo_IMQHSI_VPIHvIeH-1neDA_yzbHCs8aLPeOlTn78fo8PatxlOnuMY_Z5Nf00uq6vr-WJycVUFQbWogPogdfA1XwNw4QmDtQSpmAZNJPf1SntRy5VhIlhQEkTwynsajAVrOOVj9G03976sNrAO0PXJt-4-NRufHl30jXvb6ZpbdxMfnBTEquETY3T6PCDFv2U43W2aHKBtfQexZMeYUZZrLeW7KDWGSUI53aJf_kPvYknd8ImBstZQo7QZqK87KqSYc4J6vzclbiux20s8sJ9fH7onXwTlT4NkoTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899818678</pqid></control><display><type>article</type><title>Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gonzalez, Javier T ; Fuchs, Cas J ; Betts, James A ; van Loon, Luc J C</creator><creatorcontrib>Gonzalez, Javier T ; Fuchs, Cas J ; Betts, James A ; van Loon, Luc J C</creatorcontrib><description>Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass ·h can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.</description><identifier>ISSN: 2072-6643</identifier><identifier>EISSN: 2072-6643</identifier><identifier>DOI: 10.3390/nu9040344</identifier><identifier>PMID: 28358334</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Absorption ; Athletic Performance ; Blood Glucose - metabolism ; Carbohydrates ; Dietary Carbohydrates - administration &amp; dosage ; Disaccharides ; distress ; Endurance ; Exercise ; fatigue strength ; Fructose ; Fructose - administration &amp; dosage ; Glucose ; Glucose - administration &amp; dosage ; glycogen ; Glycogen - metabolism ; Humans ; hydrolysis ; Ingestion ; intestinal absorption ; intestines ; Liver ; Liver - metabolism ; Muscle, Skeletal - metabolism ; Muscles ; Polymers ; repletion ; Review ; Sports Nutritional Physiological Phenomena ; Sucrose ; Transport ; transport proteins</subject><ispartof>Nutrients, 2017-03, Vol.9 (4), p.344</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4174-e1ac57caf3dee34a02ed5e5627e7053afb7a4f5b824c9e65e4ca6aa1c89e98313</citedby><cites>FETCH-LOGICAL-c4174-e1ac57caf3dee34a02ed5e5627e7053afb7a4f5b824c9e65e4ca6aa1c89e98313</cites><orcidid>0000-0002-3401-465X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409683/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409683/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28358334$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonzalez, Javier T</creatorcontrib><creatorcontrib>Fuchs, Cas J</creatorcontrib><creatorcontrib>Betts, James A</creatorcontrib><creatorcontrib>van Loon, Luc J C</creatorcontrib><title>Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?</title><title>Nutrients</title><addtitle>Nutrients</addtitle><description>Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass ·h can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.</description><subject>Absorption</subject><subject>Athletic Performance</subject><subject>Blood Glucose - metabolism</subject><subject>Carbohydrates</subject><subject>Dietary Carbohydrates - administration &amp; dosage</subject><subject>Disaccharides</subject><subject>distress</subject><subject>Endurance</subject><subject>Exercise</subject><subject>fatigue strength</subject><subject>Fructose</subject><subject>Fructose - administration &amp; dosage</subject><subject>Glucose</subject><subject>Glucose - administration &amp; dosage</subject><subject>glycogen</subject><subject>Glycogen - metabolism</subject><subject>Humans</subject><subject>hydrolysis</subject><subject>Ingestion</subject><subject>intestinal absorption</subject><subject>intestines</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Polymers</subject><subject>repletion</subject><subject>Review</subject><subject>Sports Nutritional Physiological Phenomena</subject><subject>Sucrose</subject><subject>Transport</subject><subject>transport proteins</subject><issn>2072-6643</issn><issn>2072-6643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkUtLI0EQx5tF2Uj0sF9gadiLexjt9-Oyi4QkBgTDPo5L0-nU6Mhk2u2elvXbOyEadC_WoR7Uj6Kq_gh9ouSMc0vOu2KJIFyID-iIEc0qpQQ_eJWP0EnOd2RrmmjFP6IRM1wazsUR-jNvS4gZ8LItGc9SCf22WnQ3kPsmdriOCS9j7qvpP0ihGXo_IMQHSI_VPIHvIeH-1neDA_yzbHCs8aLPeOlTn78fo8PatxlOnuMY_Z5Nf00uq6vr-WJycVUFQbWogPogdfA1XwNw4QmDtQSpmAZNJPf1SntRy5VhIlhQEkTwynsajAVrOOVj9G03976sNrAO0PXJt-4-NRufHl30jXvb6ZpbdxMfnBTEquETY3T6PCDFv2U43W2aHKBtfQexZMeYUZZrLeW7KDWGSUI53aJf_kPvYknd8ImBstZQo7QZqK87KqSYc4J6vzclbiux20s8sJ9fH7onXwTlT4NkoTQ</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Gonzalez, Javier T</creator><creator>Fuchs, Cas J</creator><creator>Betts, James A</creator><creator>van Loon, Luc J C</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3401-465X</orcidid></search><sort><creationdate>20170330</creationdate><title>Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?</title><author>Gonzalez, Javier T ; Fuchs, Cas J ; Betts, James A ; van Loon, Luc J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4174-e1ac57caf3dee34a02ed5e5627e7053afb7a4f5b824c9e65e4ca6aa1c89e98313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Athletic Performance</topic><topic>Blood Glucose - metabolism</topic><topic>Carbohydrates</topic><topic>Dietary Carbohydrates - administration &amp; dosage</topic><topic>Disaccharides</topic><topic>distress</topic><topic>Endurance</topic><topic>Exercise</topic><topic>fatigue strength</topic><topic>Fructose</topic><topic>Fructose - administration &amp; dosage</topic><topic>Glucose</topic><topic>Glucose - administration &amp; dosage</topic><topic>glycogen</topic><topic>Glycogen - metabolism</topic><topic>Humans</topic><topic>hydrolysis</topic><topic>Ingestion</topic><topic>intestinal absorption</topic><topic>intestines</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Polymers</topic><topic>repletion</topic><topic>Review</topic><topic>Sports Nutritional Physiological Phenomena</topic><topic>Sucrose</topic><topic>Transport</topic><topic>transport proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Javier T</creatorcontrib><creatorcontrib>Fuchs, Cas J</creatorcontrib><creatorcontrib>Betts, James A</creatorcontrib><creatorcontrib>van Loon, Luc J C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nutrients</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Javier T</au><au>Fuchs, Cas J</au><au>Betts, James A</au><au>van Loon, Luc J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?</atitle><jtitle>Nutrients</jtitle><addtitle>Nutrients</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>9</volume><issue>4</issue><spage>344</spage><pages>344-</pages><issn>2072-6643</issn><eissn>2072-6643</eissn><abstract>Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass ·h can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28358334</pmid><doi>10.3390/nu9040344</doi><orcidid>https://orcid.org/0000-0002-3401-465X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6643
ispartof Nutrients, 2017-03, Vol.9 (4), p.344
issn 2072-6643
2072-6643
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409683
source MEDLINE; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Absorption
Athletic Performance
Blood Glucose - metabolism
Carbohydrates
Dietary Carbohydrates - administration & dosage
Disaccharides
distress
Endurance
Exercise
fatigue strength
Fructose
Fructose - administration & dosage
Glucose
Glucose - administration & dosage
glycogen
Glycogen - metabolism
Humans
hydrolysis
Ingestion
intestinal absorption
intestines
Liver
Liver - metabolism
Muscle, Skeletal - metabolism
Muscles
Polymers
repletion
Review
Sports Nutritional Physiological Phenomena
Sucrose
Transport
transport proteins
title Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose%20Plus%20Fructose%20Ingestion%20for%20Post-Exercise%20Recovery-Greater%20than%20the%20Sum%20of%20Its%20Parts?&rft.jtitle=Nutrients&rft.au=Gonzalez,%20Javier%20T&rft.date=2017-03-30&rft.volume=9&rft.issue=4&rft.spage=344&rft.pages=344-&rft.issn=2072-6643&rft.eissn=2072-6643&rft_id=info:doi/10.3390/nu9040344&rft_dat=%3Cproquest_pubme%3E2286937755%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899818678&rft_id=info:pmid/28358334&rfr_iscdi=true