Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1
Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore,...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2017-04, Vol.292 (17), p.7233-7243 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7243 |
---|---|
container_issue | 17 |
container_start_page | 7233 |
container_title | The Journal of biological chemistry |
container_volume | 292 |
creator | Christensen, Emily M. Patel, Sagar M. Korasick, David A. Campbell, Ashley C. Krause, Kurt L. Becker, Donald F. Tanner, John J. |
description | Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination. |
doi_str_mv | 10.1074/jbc.M117.780288 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820429114</els_id><sourcerecordid>28258219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8be53ed338550533f21e5f7e8f4100d8b0813f45a475e1d7544e34df0cfb04783</originalsourceid><addsrcrecordid>eNp1kEFr2zAYhsVYWdJu592G_4BTyZKwfBmUsLWFlEJpYTchS58SBUcykhPm_voqcxfaQ3URvN_7PUIPQt8JXhBcs8ttqxd3hNSLWuBKiE9oTrCgJeXkz2c0x7giZVNxMUPnKW1xPqwhX9CsEjmsSDNH_QOk0B2cXxfDBgodrNJDiGXrvDmGyQ1QOP9v2MfQOQ9F60IafU4Gpwvwz-MOis1-p3zRj3HqlLzUKrbh79ipDIhg9npQCQryFZ1Z1SX49npfoKffvx6XN-Xq_vp2ebUqNWN0KEULnIKhVHCOOaW2IsBtDcIygrERLRaEWsYVqzkQU3PGgDJjsbYtZrWgF-jnxO337Q6MBj9E1ck-up2KowzKyfcT7zZyHQ6SM9ww0WTA5QTQMaQUwZ52CZZH-TLLl0f5cpKfN368ffLU_287F5qpAPnjBwdRJu3AazAugh6kCe5D-AtrV5cC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Christensen, Emily M. ; Patel, Sagar M. ; Korasick, David A. ; Campbell, Ashley C. ; Krause, Kurt L. ; Becker, Donald F. ; Tanner, John J.</creator><creatorcontrib>Christensen, Emily M. ; Patel, Sagar M. ; Korasick, David A. ; Campbell, Ashley C. ; Krause, Kurt L. ; Becker, Donald F. ; Tanner, John J.</creatorcontrib><description>Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.780288</identifier><identifier>PMID: 28258219</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>analytical ultracentrifugation ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; delta-1-Pyrroline-5-Carboxylate Reductase ; enzyme kinetics ; Humans ; Kinetics ; Ligands ; Mutation ; NAD(P)H-dependent reductase ; NADP - chemistry ; nicotinamide adenine dinucleotide (NADH) ; Proline - chemistry ; Protein Binding ; Protein Multimerization ; Protein Structure and Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Pyrroline Carboxylate Reductases - chemistry ; reductase ; Rossmann fold ; site-directed mutagenesis ; Substrate Specificity ; Ultracentrifugation ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2017-04, Vol.292 (17), p.7233-7243</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8be53ed338550533f21e5f7e8f4100d8b0813f45a475e1d7544e34df0cfb04783</citedby><cites>FETCH-LOGICAL-c443t-8be53ed338550533f21e5f7e8f4100d8b0813f45a475e1d7544e34df0cfb04783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409489/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409489/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28258219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christensen, Emily M.</creatorcontrib><creatorcontrib>Patel, Sagar M.</creatorcontrib><creatorcontrib>Korasick, David A.</creatorcontrib><creatorcontrib>Campbell, Ashley C.</creatorcontrib><creatorcontrib>Krause, Kurt L.</creatorcontrib><creatorcontrib>Becker, Donald F.</creatorcontrib><creatorcontrib>Tanner, John J.</creatorcontrib><title>Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.</description><subject>analytical ultracentrifugation</subject><subject>Binding Sites</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>delta-1-Pyrroline-5-Carboxylate Reductase</subject><subject>enzyme kinetics</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Mutation</subject><subject>NAD(P)H-dependent reductase</subject><subject>NADP - chemistry</subject><subject>nicotinamide adenine dinucleotide (NADH)</subject><subject>Proline - chemistry</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>Pyrroline Carboxylate Reductases - chemistry</subject><subject>reductase</subject><subject>Rossmann fold</subject><subject>site-directed mutagenesis</subject><subject>Substrate Specificity</subject><subject>Ultracentrifugation</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFr2zAYhsVYWdJu592G_4BTyZKwfBmUsLWFlEJpYTchS58SBUcykhPm_voqcxfaQ3URvN_7PUIPQt8JXhBcs8ttqxd3hNSLWuBKiE9oTrCgJeXkz2c0x7giZVNxMUPnKW1xPqwhX9CsEjmsSDNH_QOk0B2cXxfDBgodrNJDiGXrvDmGyQ1QOP9v2MfQOQ9F60IafU4Gpwvwz-MOis1-p3zRj3HqlLzUKrbh79ipDIhg9npQCQryFZ1Z1SX49npfoKffvx6XN-Xq_vp2ebUqNWN0KEULnIKhVHCOOaW2IsBtDcIygrERLRaEWsYVqzkQU3PGgDJjsbYtZrWgF-jnxO337Q6MBj9E1ck-up2KowzKyfcT7zZyHQ6SM9ww0WTA5QTQMaQUwZ52CZZH-TLLl0f5cpKfN368ffLU_287F5qpAPnjBwdRJu3AazAugh6kCe5D-AtrV5cC</recordid><startdate>20170428</startdate><enddate>20170428</enddate><creator>Christensen, Emily M.</creator><creator>Patel, Sagar M.</creator><creator>Korasick, David A.</creator><creator>Campbell, Ashley C.</creator><creator>Krause, Kurt L.</creator><creator>Becker, Donald F.</creator><creator>Tanner, John J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20170428</creationdate><title>Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1</title><author>Christensen, Emily M. ; Patel, Sagar M. ; Korasick, David A. ; Campbell, Ashley C. ; Krause, Kurt L. ; Becker, Donald F. ; Tanner, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8be53ed338550533f21e5f7e8f4100d8b0813f45a475e1d7544e34df0cfb04783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>analytical ultracentrifugation</topic><topic>Binding Sites</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>delta-1-Pyrroline-5-Carboxylate Reductase</topic><topic>enzyme kinetics</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Mutation</topic><topic>NAD(P)H-dependent reductase</topic><topic>NADP - chemistry</topic><topic>nicotinamide adenine dinucleotide (NADH)</topic><topic>Proline - chemistry</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>Pyrroline Carboxylate Reductases - chemistry</topic><topic>reductase</topic><topic>Rossmann fold</topic><topic>site-directed mutagenesis</topic><topic>Substrate Specificity</topic><topic>Ultracentrifugation</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christensen, Emily M.</creatorcontrib><creatorcontrib>Patel, Sagar M.</creatorcontrib><creatorcontrib>Korasick, David A.</creatorcontrib><creatorcontrib>Campbell, Ashley C.</creatorcontrib><creatorcontrib>Krause, Kurt L.</creatorcontrib><creatorcontrib>Becker, Donald F.</creatorcontrib><creatorcontrib>Tanner, John J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen, Emily M.</au><au>Patel, Sagar M.</au><au>Korasick, David A.</au><au>Campbell, Ashley C.</au><au>Krause, Kurt L.</au><au>Becker, Donald F.</au><au>Tanner, John J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-04-28</date><risdate>2017</risdate><volume>292</volume><issue>17</issue><spage>7233</spage><epage>7243</epage><pages>7233-7243</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28258219</pmid><doi>10.1074/jbc.M117.780288</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2017-04, Vol.292 (17), p.7233-7243 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409489 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | analytical ultracentrifugation Binding Sites Catalytic Domain Crystallography, X-Ray delta-1-Pyrroline-5-Carboxylate Reductase enzyme kinetics Humans Kinetics Ligands Mutation NAD(P)H-dependent reductase NADP - chemistry nicotinamide adenine dinucleotide (NADH) Proline - chemistry Protein Binding Protein Multimerization Protein Structure and Folding Protein Structure, Quaternary Protein Structure, Tertiary Pyrroline Carboxylate Reductases - chemistry reductase Rossmann fold site-directed mutagenesis Substrate Specificity Ultracentrifugation X-ray crystallography |
title | Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T21%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20cofactor-binding%20site%20in%20the%20proline%20biosynthetic%20enzyme%20human%20pyrroline-5-carboxylate%20reductase%201&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Christensen,%20Emily%20M.&rft.date=2017-04-28&rft.volume=292&rft.issue=17&rft.spage=7233&rft.epage=7243&rft.pages=7233-7243&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.780288&rft_dat=%3Cpubmed_cross%3E28258219%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28258219&rft_els_id=S0021925820429114&rfr_iscdi=true |