Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1

Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2017-04, Vol.292 (17), p.7233-7243
Hauptverfasser: Christensen, Emily M., Patel, Sagar M., Korasick, David A., Campbell, Ashley C., Krause, Kurt L., Becker, Donald F., Tanner, John J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7243
container_issue 17
container_start_page 7233
container_title The Journal of biological chemistry
container_volume 292
creator Christensen, Emily M.
Patel, Sagar M.
Korasick, David A.
Campbell, Ashley C.
Krause, Kurt L.
Becker, Donald F.
Tanner, John J.
description Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.
doi_str_mv 10.1074/jbc.M117.780288
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820429114</els_id><sourcerecordid>28258219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8be53ed338550533f21e5f7e8f4100d8b0813f45a475e1d7544e34df0cfb04783</originalsourceid><addsrcrecordid>eNp1kEFr2zAYhsVYWdJu592G_4BTyZKwfBmUsLWFlEJpYTchS58SBUcykhPm_voqcxfaQ3URvN_7PUIPQt8JXhBcs8ttqxd3hNSLWuBKiE9oTrCgJeXkz2c0x7giZVNxMUPnKW1xPqwhX9CsEjmsSDNH_QOk0B2cXxfDBgodrNJDiGXrvDmGyQ1QOP9v2MfQOQ9F60IafU4Gpwvwz-MOis1-p3zRj3HqlLzUKrbh79ipDIhg9npQCQryFZ1Z1SX49npfoKffvx6XN-Xq_vp2ebUqNWN0KEULnIKhVHCOOaW2IsBtDcIygrERLRaEWsYVqzkQU3PGgDJjsbYtZrWgF-jnxO337Q6MBj9E1ck-up2KowzKyfcT7zZyHQ6SM9ww0WTA5QTQMaQUwZ52CZZH-TLLl0f5cpKfN368ffLU_287F5qpAPnjBwdRJu3AazAugh6kCe5D-AtrV5cC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Christensen, Emily M. ; Patel, Sagar M. ; Korasick, David A. ; Campbell, Ashley C. ; Krause, Kurt L. ; Becker, Donald F. ; Tanner, John J.</creator><creatorcontrib>Christensen, Emily M. ; Patel, Sagar M. ; Korasick, David A. ; Campbell, Ashley C. ; Krause, Kurt L. ; Becker, Donald F. ; Tanner, John J.</creatorcontrib><description>Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M117.780288</identifier><identifier>PMID: 28258219</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>analytical ultracentrifugation ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; delta-1-Pyrroline-5-Carboxylate Reductase ; enzyme kinetics ; Humans ; Kinetics ; Ligands ; Mutation ; NAD(P)H-dependent reductase ; NADP - chemistry ; nicotinamide adenine dinucleotide (NADH) ; Proline - chemistry ; Protein Binding ; Protein Multimerization ; Protein Structure and Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Pyrroline Carboxylate Reductases - chemistry ; reductase ; Rossmann fold ; site-directed mutagenesis ; Substrate Specificity ; Ultracentrifugation ; X-ray crystallography</subject><ispartof>The Journal of biological chemistry, 2017-04, Vol.292 (17), p.7233-7243</ispartof><rights>2017 © 2017 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2017 by The American Society for Biochemistry and Molecular Biology, Inc. 2017 The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8be53ed338550533f21e5f7e8f4100d8b0813f45a475e1d7544e34df0cfb04783</citedby><cites>FETCH-LOGICAL-c443t-8be53ed338550533f21e5f7e8f4100d8b0813f45a475e1d7544e34df0cfb04783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409489/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5409489/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28258219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christensen, Emily M.</creatorcontrib><creatorcontrib>Patel, Sagar M.</creatorcontrib><creatorcontrib>Korasick, David A.</creatorcontrib><creatorcontrib>Campbell, Ashley C.</creatorcontrib><creatorcontrib>Krause, Kurt L.</creatorcontrib><creatorcontrib>Becker, Donald F.</creatorcontrib><creatorcontrib>Tanner, John J.</creatorcontrib><title>Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.</description><subject>analytical ultracentrifugation</subject><subject>Binding Sites</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>delta-1-Pyrroline-5-Carboxylate Reductase</subject><subject>enzyme kinetics</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Mutation</subject><subject>NAD(P)H-dependent reductase</subject><subject>NADP - chemistry</subject><subject>nicotinamide adenine dinucleotide (NADH)</subject><subject>Proline - chemistry</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein Structure and Folding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>Pyrroline Carboxylate Reductases - chemistry</subject><subject>reductase</subject><subject>Rossmann fold</subject><subject>site-directed mutagenesis</subject><subject>Substrate Specificity</subject><subject>Ultracentrifugation</subject><subject>X-ray crystallography</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFr2zAYhsVYWdJu592G_4BTyZKwfBmUsLWFlEJpYTchS58SBUcykhPm_voqcxfaQ3URvN_7PUIPQt8JXhBcs8ttqxd3hNSLWuBKiE9oTrCgJeXkz2c0x7giZVNxMUPnKW1xPqwhX9CsEjmsSDNH_QOk0B2cXxfDBgodrNJDiGXrvDmGyQ1QOP9v2MfQOQ9F60IafU4Gpwvwz-MOis1-p3zRj3HqlLzUKrbh79ipDIhg9npQCQryFZ1Z1SX49npfoKffvx6XN-Xq_vp2ebUqNWN0KEULnIKhVHCOOaW2IsBtDcIygrERLRaEWsYVqzkQU3PGgDJjsbYtZrWgF-jnxO337Q6MBj9E1ck-up2KowzKyfcT7zZyHQ6SM9ww0WTA5QTQMaQUwZ52CZZH-TLLl0f5cpKfN368ffLU_287F5qpAPnjBwdRJu3AazAugh6kCe5D-AtrV5cC</recordid><startdate>20170428</startdate><enddate>20170428</enddate><creator>Christensen, Emily M.</creator><creator>Patel, Sagar M.</creator><creator>Korasick, David A.</creator><creator>Campbell, Ashley C.</creator><creator>Krause, Kurt L.</creator><creator>Becker, Donald F.</creator><creator>Tanner, John J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20170428</creationdate><title>Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1</title><author>Christensen, Emily M. ; Patel, Sagar M. ; Korasick, David A. ; Campbell, Ashley C. ; Krause, Kurt L. ; Becker, Donald F. ; Tanner, John J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8be53ed338550533f21e5f7e8f4100d8b0813f45a475e1d7544e34df0cfb04783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>analytical ultracentrifugation</topic><topic>Binding Sites</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>delta-1-Pyrroline-5-Carboxylate Reductase</topic><topic>enzyme kinetics</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Mutation</topic><topic>NAD(P)H-dependent reductase</topic><topic>NADP - chemistry</topic><topic>nicotinamide adenine dinucleotide (NADH)</topic><topic>Proline - chemistry</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein Structure and Folding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>Pyrroline Carboxylate Reductases - chemistry</topic><topic>reductase</topic><topic>Rossmann fold</topic><topic>site-directed mutagenesis</topic><topic>Substrate Specificity</topic><topic>Ultracentrifugation</topic><topic>X-ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christensen, Emily M.</creatorcontrib><creatorcontrib>Patel, Sagar M.</creatorcontrib><creatorcontrib>Korasick, David A.</creatorcontrib><creatorcontrib>Campbell, Ashley C.</creatorcontrib><creatorcontrib>Krause, Kurt L.</creatorcontrib><creatorcontrib>Becker, Donald F.</creatorcontrib><creatorcontrib>Tanner, John J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen, Emily M.</au><au>Patel, Sagar M.</au><au>Korasick, David A.</au><au>Campbell, Ashley C.</au><au>Krause, Kurt L.</au><au>Becker, Donald F.</au><au>Tanner, John J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2017-04-28</date><risdate>2017</risdate><volume>292</volume><issue>17</issue><spage>7233</spage><epage>7243</epage><pages>7233-7243</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Pyrroline-5-carboxylate reductase (PYCR) is the final enzyme in proline biosynthesis, catalyzing the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate (P5C) to proline. Mutations in the PYCR1 gene alter mitochondrial function and cause the connective tissue disorder cutis laxa. Furthermore, PYCR1 is overexpressed in multiple cancers, and the PYCR1 knock-out suppresses tumorigenic growth, suggesting that PYCR1 is a potential cancer target. However, inhibitor development has been stymied by limited mechanistic details for the enzyme, particularly in light of a previous crystallographic study that placed the cofactor-binding site in the C-terminal domain rather than the anticipated Rossmann fold of the N-terminal domain. To fill this gap, we report crystallographic, sedimentation-velocity, and kinetics data for human PYCR1. Structures of binary complexes of PYCR1 with NADPH or proline determined at 1.9 Å resolution provide insight into cofactor and substrate recognition. We see NADPH bound to the Rossmann fold, over 25 Å from the previously proposed site. The 1.85 Å resolution structure of a ternary complex containing NADPH and a P5C/proline analog provides a model of the Michaelis complex formed during hydride transfer. Sedimentation velocity shows that PYCR1 forms a concentration-dependent decamer in solution, consistent with the pentamer-of-dimers assembly seen crystallographically. Kinetic and mutational analysis confirmed several features seen in the crystal structure, including the importance of a hydrogen bond between Thr-238 and the substrate as well as limited cofactor discrimination.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28258219</pmid><doi>10.1074/jbc.M117.780288</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2017-04, Vol.292 (17), p.7233-7243
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409489
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects analytical ultracentrifugation
Binding Sites
Catalytic Domain
Crystallography, X-Ray
delta-1-Pyrroline-5-Carboxylate Reductase
enzyme kinetics
Humans
Kinetics
Ligands
Mutation
NAD(P)H-dependent reductase
NADP - chemistry
nicotinamide adenine dinucleotide (NADH)
Proline - chemistry
Protein Binding
Protein Multimerization
Protein Structure and Folding
Protein Structure, Quaternary
Protein Structure, Tertiary
Pyrroline Carboxylate Reductases - chemistry
reductase
Rossmann fold
site-directed mutagenesis
Substrate Specificity
Ultracentrifugation
X-ray crystallography
title Resolving the cofactor-binding site in the proline biosynthetic enzyme human pyrroline-5-carboxylate reductase 1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T21%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20cofactor-binding%20site%20in%20the%20proline%20biosynthetic%20enzyme%20human%20pyrroline-5-carboxylate%20reductase%201&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Christensen,%20Emily%20M.&rft.date=2017-04-28&rft.volume=292&rft.issue=17&rft.spage=7233&rft.epage=7243&rft.pages=7233-7243&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M117.780288&rft_dat=%3Cpubmed_cross%3E28258219%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28258219&rft_els_id=S0021925820429114&rfr_iscdi=true