Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST
Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter E...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2016-10, Vol.25 (20), p.4448-4461 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4461 |
---|---|
container_issue | 20 |
container_start_page | 4448 |
container_title | Human molecular genetics |
container_volume | 25 |
creator | Perkins, Emma M Suminaite, Daumante Clarkson, Yvonne L Lee, Sin Kwan Lyndon, Alastair R Rothstein, Jeffrey D Wyllie, David J A Tanaka, Kohichi Jackson, Mandy |
description | Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In β-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of β-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with β-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young β-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of β-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis. |
doi_str_mv | 10.1093/hmg/ddw274 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1866297345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a38e990ebb6f70ae5bbd7d1fa4d42efe5f76a78f477b9f3d5be34c81bb112b5e3</originalsourceid><addsrcrecordid>eNpVUdFu0zAUtRCIlcELH4D8iJCy2rETJy9IUQWjUiWqdTxbdnLdejhJsZ2hfsv-Yh_CN-GuY2Iv90j3Hp177zkIvafkgpKazXf9dt51v3PBX6AZ5SXJclKxl2hG6pJnZU3KM_QmhBtCaMmZeI3O8ooKRup8hu7WY4jg7ehxCx40OKc8Xk_-px1uIPWcC9gOWA14s2iK-WbdXC0aivtxCpBqBw4rDxjCHlqrnDvg28kN4JV2gOOI4w5wOKTG1oZoWwzGQBvxaLAbQzjin_tsuVzio0D0D6s6fLlqNtdv0SujXIB3j3iOfnz9cr34lq2-Xy4XzSprmahiplgFdU1A69IIoqDQuhMdNYp3PAcDhRGlEpXhQujasK7QwHhbUa0pzXUB7Bx9PunuJ91D18IQvXJy722v_EGOysrnk8Hu5Ha8lQVPHuY0CXx8FPDjrwlClL0NR-vUAMknSauyzGvBeJGon07U1qf3PZinNZTIY5oypSlPaSbyh_8Pe6L-i4_9BTvOoAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866297345</pqid></control><display><type>article</type><title>Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Perkins, Emma M ; Suminaite, Daumante ; Clarkson, Yvonne L ; Lee, Sin Kwan ; Lyndon, Alastair R ; Rothstein, Jeffrey D ; Wyllie, David J A ; Tanaka, Kohichi ; Jackson, Mandy</creator><creatorcontrib>Perkins, Emma M ; Suminaite, Daumante ; Clarkson, Yvonne L ; Lee, Sin Kwan ; Lyndon, Alastair R ; Rothstein, Jeffrey D ; Wyllie, David J A ; Tanaka, Kohichi ; Jackson, Mandy</creatorcontrib><description>Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In β-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of β-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with β-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young β-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of β-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis.</description><identifier>ISSN: 0964-6906</identifier><identifier>ISSN: 1460-2083</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddw274</identifier><identifier>PMID: 28173092</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Cerebellar Ataxia - genetics ; Cerebellar Ataxia - metabolism ; Cerebellar Ataxia - pathology ; Disease Models, Animal ; Excitatory Amino Acid Transporter 1 - metabolism ; Excitatory Amino Acid Transporter 1 - physiology ; Excitatory Amino Acid Transporter 4 - metabolism ; Excitatory Amino Acid Transporter 4 - physiology ; Female ; Male ; Mice ; Mice, Knockout ; Phenotype ; Purkinje Cells - metabolism ; Purkinje Cells - pathology ; Spectrin - metabolism ; Spectrin - physiology ; Spinocerebellar Ataxias - genetics ; Spinocerebellar Ataxias - metabolism ; Spinocerebellar Ataxias - pathology</subject><ispartof>Human molecular genetics, 2016-10, Vol.25 (20), p.4448-4461</ispartof><rights>The Author 2016. Published by Oxford University Press. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a38e990ebb6f70ae5bbd7d1fa4d42efe5f76a78f477b9f3d5be34c81bb112b5e3</citedby><cites>FETCH-LOGICAL-c378t-a38e990ebb6f70ae5bbd7d1fa4d42efe5f76a78f477b9f3d5be34c81bb112b5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28173092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkins, Emma M</creatorcontrib><creatorcontrib>Suminaite, Daumante</creatorcontrib><creatorcontrib>Clarkson, Yvonne L</creatorcontrib><creatorcontrib>Lee, Sin Kwan</creatorcontrib><creatorcontrib>Lyndon, Alastair R</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D</creatorcontrib><creatorcontrib>Wyllie, David J A</creatorcontrib><creatorcontrib>Tanaka, Kohichi</creatorcontrib><creatorcontrib>Jackson, Mandy</creatorcontrib><title>Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In β-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of β-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with β-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young β-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of β-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis.</description><subject>Animals</subject><subject>Cerebellar Ataxia - genetics</subject><subject>Cerebellar Ataxia - metabolism</subject><subject>Cerebellar Ataxia - pathology</subject><subject>Disease Models, Animal</subject><subject>Excitatory Amino Acid Transporter 1 - metabolism</subject><subject>Excitatory Amino Acid Transporter 1 - physiology</subject><subject>Excitatory Amino Acid Transporter 4 - metabolism</subject><subject>Excitatory Amino Acid Transporter 4 - physiology</subject><subject>Female</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Phenotype</subject><subject>Purkinje Cells - metabolism</subject><subject>Purkinje Cells - pathology</subject><subject>Spectrin - metabolism</subject><subject>Spectrin - physiology</subject><subject>Spinocerebellar Ataxias - genetics</subject><subject>Spinocerebellar Ataxias - metabolism</subject><subject>Spinocerebellar Ataxias - pathology</subject><issn>0964-6906</issn><issn>1460-2083</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUdFu0zAUtRCIlcELH4D8iJCy2rETJy9IUQWjUiWqdTxbdnLdejhJsZ2hfsv-Yh_CN-GuY2Iv90j3Hp177zkIvafkgpKazXf9dt51v3PBX6AZ5SXJclKxl2hG6pJnZU3KM_QmhBtCaMmZeI3O8ooKRup8hu7WY4jg7ehxCx40OKc8Xk_-px1uIPWcC9gOWA14s2iK-WbdXC0aivtxCpBqBw4rDxjCHlqrnDvg28kN4JV2gOOI4w5wOKTG1oZoWwzGQBvxaLAbQzjin_tsuVzio0D0D6s6fLlqNtdv0SujXIB3j3iOfnz9cr34lq2-Xy4XzSprmahiplgFdU1A69IIoqDQuhMdNYp3PAcDhRGlEpXhQujasK7QwHhbUa0pzXUB7Bx9PunuJ91D18IQvXJy722v_EGOysrnk8Hu5Ha8lQVPHuY0CXx8FPDjrwlClL0NR-vUAMknSauyzGvBeJGon07U1qf3PZinNZTIY5oypSlPaSbyh_8Pe6L-i4_9BTvOoAQ</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Perkins, Emma M</creator><creator>Suminaite, Daumante</creator><creator>Clarkson, Yvonne L</creator><creator>Lee, Sin Kwan</creator><creator>Lyndon, Alastair R</creator><creator>Rothstein, Jeffrey D</creator><creator>Wyllie, David J A</creator><creator>Tanaka, Kohichi</creator><creator>Jackson, Mandy</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161015</creationdate><title>Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST</title><author>Perkins, Emma M ; Suminaite, Daumante ; Clarkson, Yvonne L ; Lee, Sin Kwan ; Lyndon, Alastair R ; Rothstein, Jeffrey D ; Wyllie, David J A ; Tanaka, Kohichi ; Jackson, Mandy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a38e990ebb6f70ae5bbd7d1fa4d42efe5f76a78f477b9f3d5be34c81bb112b5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cerebellar Ataxia - genetics</topic><topic>Cerebellar Ataxia - metabolism</topic><topic>Cerebellar Ataxia - pathology</topic><topic>Disease Models, Animal</topic><topic>Excitatory Amino Acid Transporter 1 - metabolism</topic><topic>Excitatory Amino Acid Transporter 1 - physiology</topic><topic>Excitatory Amino Acid Transporter 4 - metabolism</topic><topic>Excitatory Amino Acid Transporter 4 - physiology</topic><topic>Female</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Phenotype</topic><topic>Purkinje Cells - metabolism</topic><topic>Purkinje Cells - pathology</topic><topic>Spectrin - metabolism</topic><topic>Spectrin - physiology</topic><topic>Spinocerebellar Ataxias - genetics</topic><topic>Spinocerebellar Ataxias - metabolism</topic><topic>Spinocerebellar Ataxias - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkins, Emma M</creatorcontrib><creatorcontrib>Suminaite, Daumante</creatorcontrib><creatorcontrib>Clarkson, Yvonne L</creatorcontrib><creatorcontrib>Lee, Sin Kwan</creatorcontrib><creatorcontrib>Lyndon, Alastair R</creatorcontrib><creatorcontrib>Rothstein, Jeffrey D</creatorcontrib><creatorcontrib>Wyllie, David J A</creatorcontrib><creatorcontrib>Tanaka, Kohichi</creatorcontrib><creatorcontrib>Jackson, Mandy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkins, Emma M</au><au>Suminaite, Daumante</au><au>Clarkson, Yvonne L</au><au>Lee, Sin Kwan</au><au>Lyndon, Alastair R</au><au>Rothstein, Jeffrey D</au><au>Wyllie, David J A</au><au>Tanaka, Kohichi</au><au>Jackson, Mandy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2016-10-15</date><risdate>2016</risdate><volume>25</volume><issue>20</issue><spage>4448</spage><epage>4461</epage><pages>4448-4461</pages><issn>0964-6906</issn><issn>1460-2083</issn><eissn>1460-2083</eissn><abstract>Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking β-III spectrin (β-III-/-). One function of β-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In β-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of β-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with β-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young β-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of β-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28173092</pmid><doi>10.1093/hmg/ddw274</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2016-10, Vol.25 (20), p.4448-4461 |
issn | 0964-6906 1460-2083 1460-2083 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5409221 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Animals Cerebellar Ataxia - genetics Cerebellar Ataxia - metabolism Cerebellar Ataxia - pathology Disease Models, Animal Excitatory Amino Acid Transporter 1 - metabolism Excitatory Amino Acid Transporter 1 - physiology Excitatory Amino Acid Transporter 4 - metabolism Excitatory Amino Acid Transporter 4 - physiology Female Male Mice Mice, Knockout Phenotype Purkinje Cells - metabolism Purkinje Cells - pathology Spectrin - metabolism Spectrin - physiology Spinocerebellar Ataxias - genetics Spinocerebellar Ataxias - metabolism Spinocerebellar Ataxias - pathology |
title | Posterior cerebellar Purkinje cells in an SCA5/SPARCA1 mouse model are especially vulnerable to the synergistic effect of loss of β-III spectrin and GLAST |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posterior%20cerebellar%20Purkinje%20cells%20in%20an%20SCA5/SPARCA1%20mouse%20model%20are%20especially%20vulnerable%20to%20the%20synergistic%20effect%20of%20loss%20of%20%CE%B2-III%20spectrin%20and%20GLAST&rft.jtitle=Human%20molecular%20genetics&rft.au=Perkins,%20Emma%20M&rft.date=2016-10-15&rft.volume=25&rft.issue=20&rft.spage=4448&rft.epage=4461&rft.pages=4448-4461&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddw274&rft_dat=%3Cproquest_pubme%3E1866297345%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866297345&rft_id=info:pmid/28173092&rfr_iscdi=true |