Endocytic reawakening of motility in jammed epithelia

Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2017-05, Vol.16 (5), p.587-596
Hauptverfasser: Malinverno, Chiara, Corallino, Salvatore, Giavazzi, Fabio, Bergert, Martin, Li, Qingsen, Leoni, Marco, Disanza, Andrea, Frittoli, Emanuela, Oldani, Amanda, Martini, Emanuele, Lendenmann, Tobias, Deflorian, Gianluca, Beznoussenko, Galina V., Poulikakos, Dimos, Ong, Kok Haur, Uroz, Marina, Trepat, Xavier, Parazzoli, Dario, Maiuri, Paolo, Yu, Weimiao, Ferrari, Aldo, Cerbino, Roberto, Scita, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 596
container_issue 5
container_start_page 587
container_title Nature materials
container_volume 16
creator Malinverno, Chiara
Corallino, Salvatore
Giavazzi, Fabio
Bergert, Martin
Li, Qingsen
Leoni, Marco
Disanza, Andrea
Frittoli, Emanuela
Oldani, Amanda
Martini, Emanuele
Lendenmann, Tobias
Deflorian, Gianluca
Beznoussenko, Galina V.
Poulikakos, Dimos
Ong, Kok Haur
Uroz, Marina
Trepat, Xavier
Parazzoli, Dario
Maiuri, Paolo
Yu, Weimiao
Ferrari, Aldo
Cerbino, Roberto
Scita, Giorgio
description Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination. Increased cellular expression of RAB5A, an important regulator of endocytic processes, brings epithelial cells from a jammed state to coordinated motion, and can facilitate wound closure, gastrulation and migration in constrained environments.
doi_str_mv 10.1038/nmat4848
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5407454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1863219630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c651t-a0274eb94f5b25a6fd636abf01a388fd7ca0abfcce6d8dec7744c7730f22f9f53</originalsourceid><addsrcrecordid>eNqFkclOHDEQhq0oEVuQeIKoJS5wGPDe7gtShMgiIeVCzpbHXR48dNsT2x00bx_DDBPCJQcvpfrqL7t-hE4IviCYqcswmsIVV-_QAeGtnHEp8fvtnRBK99FhzkuMKRFC7qF9qggTVPIDJG5CH-26eNskMI_mAYIPiya6ZozFD76sGx-apRlH6BtY-XIPgzcf0QdnhgzH2_MI_fxyc3f9bXb74-v368-3MysFKTODacth3nEn5lQY6XrJpJk7TAxTyvWtNbiG1oLsVQ-2bTmvG8OOUtc5wY7Q1UZ3Nc3rAyyEksygV8mPJq11NF7_mwn-Xi_iby04brngVYBsBGyerE5gIVlTngt3wdOiuKWaYSlJW2vOtk1T_DVBLnr02cIwmABxypp0mFOBiWT_R5VklHSS4YqevkGXcUqhTq9SHWWk65T4K2hTzDmB2_2VYP1ktX6xuqKfXs9mB754W4HzDZBrKiwgver4VuwPB4OyZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892319985</pqid></control><display><type>article</type><title>Endocytic reawakening of motility in jammed epithelia</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Recercat</source><source>Nature</source><creator>Malinverno, Chiara ; Corallino, Salvatore ; Giavazzi, Fabio ; Bergert, Martin ; Li, Qingsen ; Leoni, Marco ; Disanza, Andrea ; Frittoli, Emanuela ; Oldani, Amanda ; Martini, Emanuele ; Lendenmann, Tobias ; Deflorian, Gianluca ; Beznoussenko, Galina V. ; Poulikakos, Dimos ; Ong, Kok Haur ; Uroz, Marina ; Trepat, Xavier ; Parazzoli, Dario ; Maiuri, Paolo ; Yu, Weimiao ; Ferrari, Aldo ; Cerbino, Roberto ; Scita, Giorgio</creator><creatorcontrib>Malinverno, Chiara ; Corallino, Salvatore ; Giavazzi, Fabio ; Bergert, Martin ; Li, Qingsen ; Leoni, Marco ; Disanza, Andrea ; Frittoli, Emanuela ; Oldani, Amanda ; Martini, Emanuele ; Lendenmann, Tobias ; Deflorian, Gianluca ; Beznoussenko, Galina V. ; Poulikakos, Dimos ; Ong, Kok Haur ; Uroz, Marina ; Trepat, Xavier ; Parazzoli, Dario ; Maiuri, Paolo ; Yu, Weimiao ; Ferrari, Aldo ; Cerbino, Roberto ; Scita, Giorgio</creatorcontrib><description>Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination. Increased cellular expression of RAB5A, an important regulator of endocytic processes, brings epithelial cells from a jammed state to coordinated motion, and can facilitate wound closure, gastrulation and migration in constrained environments.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4848</identifier><identifier>PMID: 28135264</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/1461 ; 631/80/84/2334 ; Biomaterials ; Biomechanical Phenomena ; Cell Line, Tumor ; Cell Membrane - metabolism ; Cell motility ; Computational fluid dynamics ; Condensed Matter Physics ; Dynamics ; Efflux ; Endocytosis ; Epiteli ; Epithelium ; Epithelium - metabolism ; Fluids ; Humans ; Materials Science ; Migration ; Monolayers ; Motilitat cel·lular ; Motility ; Nanotechnology ; Optical and Electronic Materials ; Phase transitions ; Proteins ; Proteïnes ; rab5 GTP-Binding Proteins - metabolism ; Rigidity ; Traction ; Velocity</subject><ispartof>Nature materials, 2017-05, Vol.16 (5), p.587-596</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group May 2017</rights><rights>(c) Malinverno, Chiara et al., 2017 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c651t-a0274eb94f5b25a6fd636abf01a388fd7ca0abfcce6d8dec7744c7730f22f9f53</citedby><cites>FETCH-LOGICAL-c651t-a0274eb94f5b25a6fd636abf01a388fd7ca0abfcce6d8dec7744c7730f22f9f53</cites><orcidid>0000-0001-7984-1889 ; 0000-0003-0434-7741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4848$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4848$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,26951,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28135264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malinverno, Chiara</creatorcontrib><creatorcontrib>Corallino, Salvatore</creatorcontrib><creatorcontrib>Giavazzi, Fabio</creatorcontrib><creatorcontrib>Bergert, Martin</creatorcontrib><creatorcontrib>Li, Qingsen</creatorcontrib><creatorcontrib>Leoni, Marco</creatorcontrib><creatorcontrib>Disanza, Andrea</creatorcontrib><creatorcontrib>Frittoli, Emanuela</creatorcontrib><creatorcontrib>Oldani, Amanda</creatorcontrib><creatorcontrib>Martini, Emanuele</creatorcontrib><creatorcontrib>Lendenmann, Tobias</creatorcontrib><creatorcontrib>Deflorian, Gianluca</creatorcontrib><creatorcontrib>Beznoussenko, Galina V.</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><creatorcontrib>Ong, Kok Haur</creatorcontrib><creatorcontrib>Uroz, Marina</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Parazzoli, Dario</creatorcontrib><creatorcontrib>Maiuri, Paolo</creatorcontrib><creatorcontrib>Yu, Weimiao</creatorcontrib><creatorcontrib>Ferrari, Aldo</creatorcontrib><creatorcontrib>Cerbino, Roberto</creatorcontrib><creatorcontrib>Scita, Giorgio</creatorcontrib><title>Endocytic reawakening of motility in jammed epithelia</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination. Increased cellular expression of RAB5A, an important regulator of endocytic processes, brings epithelial cells from a jammed state to coordinated motion, and can facilitate wound closure, gastrulation and migration in constrained environments.</description><subject>631/57/1461</subject><subject>631/80/84/2334</subject><subject>Biomaterials</subject><subject>Biomechanical Phenomena</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - metabolism</subject><subject>Cell motility</subject><subject>Computational fluid dynamics</subject><subject>Condensed Matter Physics</subject><subject>Dynamics</subject><subject>Efflux</subject><subject>Endocytosis</subject><subject>Epiteli</subject><subject>Epithelium</subject><subject>Epithelium - metabolism</subject><subject>Fluids</subject><subject>Humans</subject><subject>Materials Science</subject><subject>Migration</subject><subject>Monolayers</subject><subject>Motilitat cel·lular</subject><subject>Motility</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Proteins</subject><subject>Proteïnes</subject><subject>rab5 GTP-Binding Proteins - metabolism</subject><subject>Rigidity</subject><subject>Traction</subject><subject>Velocity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><recordid>eNqFkclOHDEQhq0oEVuQeIKoJS5wGPDe7gtShMgiIeVCzpbHXR48dNsT2x00bx_DDBPCJQcvpfrqL7t-hE4IviCYqcswmsIVV-_QAeGtnHEp8fvtnRBK99FhzkuMKRFC7qF9qggTVPIDJG5CH-26eNskMI_mAYIPiya6ZozFD76sGx-apRlH6BtY-XIPgzcf0QdnhgzH2_MI_fxyc3f9bXb74-v368-3MysFKTODacth3nEn5lQY6XrJpJk7TAxTyvWtNbiG1oLsVQ-2bTmvG8OOUtc5wY7Q1UZ3Nc3rAyyEksygV8mPJq11NF7_mwn-Xi_iby04brngVYBsBGyerE5gIVlTngt3wdOiuKWaYSlJW2vOtk1T_DVBLnr02cIwmABxypp0mFOBiWT_R5VklHSS4YqevkGXcUqhTq9SHWWk65T4K2hTzDmB2_2VYP1ktX6xuqKfXs9mB754W4HzDZBrKiwgver4VuwPB4OyZg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Malinverno, Chiara</creator><creator>Corallino, Salvatore</creator><creator>Giavazzi, Fabio</creator><creator>Bergert, Martin</creator><creator>Li, Qingsen</creator><creator>Leoni, Marco</creator><creator>Disanza, Andrea</creator><creator>Frittoli, Emanuela</creator><creator>Oldani, Amanda</creator><creator>Martini, Emanuele</creator><creator>Lendenmann, Tobias</creator><creator>Deflorian, Gianluca</creator><creator>Beznoussenko, Galina V.</creator><creator>Poulikakos, Dimos</creator><creator>Ong, Kok Haur</creator><creator>Uroz, Marina</creator><creator>Trepat, Xavier</creator><creator>Parazzoli, Dario</creator><creator>Maiuri, Paolo</creator><creator>Yu, Weimiao</creator><creator>Ferrari, Aldo</creator><creator>Cerbino, Roberto</creator><creator>Scita, Giorgio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>XX2</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7984-1889</orcidid><orcidid>https://orcid.org/0000-0003-0434-7741</orcidid></search><sort><creationdate>20170501</creationdate><title>Endocytic reawakening of motility in jammed epithelia</title><author>Malinverno, Chiara ; Corallino, Salvatore ; Giavazzi, Fabio ; Bergert, Martin ; Li, Qingsen ; Leoni, Marco ; Disanza, Andrea ; Frittoli, Emanuela ; Oldani, Amanda ; Martini, Emanuele ; Lendenmann, Tobias ; Deflorian, Gianluca ; Beznoussenko, Galina V. ; Poulikakos, Dimos ; Ong, Kok Haur ; Uroz, Marina ; Trepat, Xavier ; Parazzoli, Dario ; Maiuri, Paolo ; Yu, Weimiao ; Ferrari, Aldo ; Cerbino, Roberto ; Scita, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c651t-a0274eb94f5b25a6fd636abf01a388fd7ca0abfcce6d8dec7744c7730f22f9f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/57/1461</topic><topic>631/80/84/2334</topic><topic>Biomaterials</topic><topic>Biomechanical Phenomena</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - metabolism</topic><topic>Cell motility</topic><topic>Computational fluid dynamics</topic><topic>Condensed Matter Physics</topic><topic>Dynamics</topic><topic>Efflux</topic><topic>Endocytosis</topic><topic>Epiteli</topic><topic>Epithelium</topic><topic>Epithelium - metabolism</topic><topic>Fluids</topic><topic>Humans</topic><topic>Materials Science</topic><topic>Migration</topic><topic>Monolayers</topic><topic>Motilitat cel·lular</topic><topic>Motility</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Proteins</topic><topic>Proteïnes</topic><topic>rab5 GTP-Binding Proteins - metabolism</topic><topic>Rigidity</topic><topic>Traction</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malinverno, Chiara</creatorcontrib><creatorcontrib>Corallino, Salvatore</creatorcontrib><creatorcontrib>Giavazzi, Fabio</creatorcontrib><creatorcontrib>Bergert, Martin</creatorcontrib><creatorcontrib>Li, Qingsen</creatorcontrib><creatorcontrib>Leoni, Marco</creatorcontrib><creatorcontrib>Disanza, Andrea</creatorcontrib><creatorcontrib>Frittoli, Emanuela</creatorcontrib><creatorcontrib>Oldani, Amanda</creatorcontrib><creatorcontrib>Martini, Emanuele</creatorcontrib><creatorcontrib>Lendenmann, Tobias</creatorcontrib><creatorcontrib>Deflorian, Gianluca</creatorcontrib><creatorcontrib>Beznoussenko, Galina V.</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><creatorcontrib>Ong, Kok Haur</creatorcontrib><creatorcontrib>Uroz, Marina</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Parazzoli, Dario</creatorcontrib><creatorcontrib>Maiuri, Paolo</creatorcontrib><creatorcontrib>Yu, Weimiao</creatorcontrib><creatorcontrib>Ferrari, Aldo</creatorcontrib><creatorcontrib>Cerbino, Roberto</creatorcontrib><creatorcontrib>Scita, Giorgio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malinverno, Chiara</au><au>Corallino, Salvatore</au><au>Giavazzi, Fabio</au><au>Bergert, Martin</au><au>Li, Qingsen</au><au>Leoni, Marco</au><au>Disanza, Andrea</au><au>Frittoli, Emanuela</au><au>Oldani, Amanda</au><au>Martini, Emanuele</au><au>Lendenmann, Tobias</au><au>Deflorian, Gianluca</au><au>Beznoussenko, Galina V.</au><au>Poulikakos, Dimos</au><au>Ong, Kok Haur</au><au>Uroz, Marina</au><au>Trepat, Xavier</au><au>Parazzoli, Dario</au><au>Maiuri, Paolo</au><au>Yu, Weimiao</au><au>Ferrari, Aldo</au><au>Cerbino, Roberto</au><au>Scita, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocytic reawakening of motility in jammed epithelia</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>16</volume><issue>5</issue><spage>587</spage><epage>596</epage><pages>587-596</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination. Increased cellular expression of RAB5A, an important regulator of endocytic processes, brings epithelial cells from a jammed state to coordinated motion, and can facilitate wound closure, gastrulation and migration in constrained environments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28135264</pmid><doi>10.1038/nmat4848</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7984-1889</orcidid><orcidid>https://orcid.org/0000-0003-0434-7741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2017-05, Vol.16 (5), p.587-596
issn 1476-1122
1476-4660
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5407454
source MEDLINE; Springer Nature - Complete Springer Journals; Recercat; Nature
subjects 631/57/1461
631/80/84/2334
Biomaterials
Biomechanical Phenomena
Cell Line, Tumor
Cell Membrane - metabolism
Cell motility
Computational fluid dynamics
Condensed Matter Physics
Dynamics
Efflux
Endocytosis
Epiteli
Epithelium
Epithelium - metabolism
Fluids
Humans
Materials Science
Migration
Monolayers
Motilitat cel·lular
Motility
Nanotechnology
Optical and Electronic Materials
Phase transitions
Proteins
Proteïnes
rab5 GTP-Binding Proteins - metabolism
Rigidity
Traction
Velocity
title Endocytic reawakening of motility in jammed epithelia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocytic%20reawakening%20of%20motility%20in%20jammed%20epithelia&rft.jtitle=Nature%20materials&rft.au=Malinverno,%20Chiara&rft.date=2017-05-01&rft.volume=16&rft.issue=5&rft.spage=587&rft.epage=596&rft.pages=587-596&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4848&rft_dat=%3Cproquest_pubme%3E1863219630%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1892319985&rft_id=info:pmid/28135264&rfr_iscdi=true