Endocytic reawakening of motility in jammed epithelia
Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells,...
Gespeichert in:
Veröffentlicht in: | Nature materials 2017-05, Vol.16 (5), p.587-596 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 596 |
---|---|
container_issue | 5 |
container_start_page | 587 |
container_title | Nature materials |
container_volume | 16 |
creator | Malinverno, Chiara Corallino, Salvatore Giavazzi, Fabio Bergert, Martin Li, Qingsen Leoni, Marco Disanza, Andrea Frittoli, Emanuela Oldani, Amanda Martini, Emanuele Lendenmann, Tobias Deflorian, Gianluca Beznoussenko, Galina V. Poulikakos, Dimos Ong, Kok Haur Uroz, Marina Trepat, Xavier Parazzoli, Dario Maiuri, Paolo Yu, Weimiao Ferrari, Aldo Cerbino, Roberto Scita, Giorgio |
description | Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.
Increased cellular expression of RAB5A, an important regulator of endocytic processes, brings epithelial cells from a jammed state to coordinated motion, and can facilitate wound closure, gastrulation and migration in constrained environments. |
doi_str_mv | 10.1038/nmat4848 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5407454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1863219630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c651t-a0274eb94f5b25a6fd636abf01a388fd7ca0abfcce6d8dec7744c7730f22f9f53</originalsourceid><addsrcrecordid>eNqFkclOHDEQhq0oEVuQeIKoJS5wGPDe7gtShMgiIeVCzpbHXR48dNsT2x00bx_DDBPCJQcvpfrqL7t-hE4IviCYqcswmsIVV-_QAeGtnHEp8fvtnRBK99FhzkuMKRFC7qF9qggTVPIDJG5CH-26eNskMI_mAYIPiya6ZozFD76sGx-apRlH6BtY-XIPgzcf0QdnhgzH2_MI_fxyc3f9bXb74-v368-3MysFKTODacth3nEn5lQY6XrJpJk7TAxTyvWtNbiG1oLsVQ-2bTmvG8OOUtc5wY7Q1UZ3Nc3rAyyEksygV8mPJq11NF7_mwn-Xi_iby04brngVYBsBGyerE5gIVlTngt3wdOiuKWaYSlJW2vOtk1T_DVBLnr02cIwmABxypp0mFOBiWT_R5VklHSS4YqevkGXcUqhTq9SHWWk65T4K2hTzDmB2_2VYP1ktX6xuqKfXs9mB754W4HzDZBrKiwgver4VuwPB4OyZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892319985</pqid></control><display><type>article</type><title>Endocytic reawakening of motility in jammed epithelia</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Recercat</source><source>Nature</source><creator>Malinverno, Chiara ; Corallino, Salvatore ; Giavazzi, Fabio ; Bergert, Martin ; Li, Qingsen ; Leoni, Marco ; Disanza, Andrea ; Frittoli, Emanuela ; Oldani, Amanda ; Martini, Emanuele ; Lendenmann, Tobias ; Deflorian, Gianluca ; Beznoussenko, Galina V. ; Poulikakos, Dimos ; Ong, Kok Haur ; Uroz, Marina ; Trepat, Xavier ; Parazzoli, Dario ; Maiuri, Paolo ; Yu, Weimiao ; Ferrari, Aldo ; Cerbino, Roberto ; Scita, Giorgio</creator><creatorcontrib>Malinverno, Chiara ; Corallino, Salvatore ; Giavazzi, Fabio ; Bergert, Martin ; Li, Qingsen ; Leoni, Marco ; Disanza, Andrea ; Frittoli, Emanuela ; Oldani, Amanda ; Martini, Emanuele ; Lendenmann, Tobias ; Deflorian, Gianluca ; Beznoussenko, Galina V. ; Poulikakos, Dimos ; Ong, Kok Haur ; Uroz, Marina ; Trepat, Xavier ; Parazzoli, Dario ; Maiuri, Paolo ; Yu, Weimiao ; Ferrari, Aldo ; Cerbino, Roberto ; Scita, Giorgio</creatorcontrib><description>Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.
Increased cellular expression of RAB5A, an important regulator of endocytic processes, brings epithelial cells from a jammed state to coordinated motion, and can facilitate wound closure, gastrulation and migration in constrained environments.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4848</identifier><identifier>PMID: 28135264</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/1461 ; 631/80/84/2334 ; Biomaterials ; Biomechanical Phenomena ; Cell Line, Tumor ; Cell Membrane - metabolism ; Cell motility ; Computational fluid dynamics ; Condensed Matter Physics ; Dynamics ; Efflux ; Endocytosis ; Epiteli ; Epithelium ; Epithelium - metabolism ; Fluids ; Humans ; Materials Science ; Migration ; Monolayers ; Motilitat cel·lular ; Motility ; Nanotechnology ; Optical and Electronic Materials ; Phase transitions ; Proteins ; Proteïnes ; rab5 GTP-Binding Proteins - metabolism ; Rigidity ; Traction ; Velocity</subject><ispartof>Nature materials, 2017-05, Vol.16 (5), p.587-596</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group May 2017</rights><rights>(c) Malinverno, Chiara et al., 2017 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c651t-a0274eb94f5b25a6fd636abf01a388fd7ca0abfcce6d8dec7744c7730f22f9f53</citedby><cites>FETCH-LOGICAL-c651t-a0274eb94f5b25a6fd636abf01a388fd7ca0abfcce6d8dec7744c7730f22f9f53</cites><orcidid>0000-0001-7984-1889 ; 0000-0003-0434-7741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4848$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4848$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,26951,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28135264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malinverno, Chiara</creatorcontrib><creatorcontrib>Corallino, Salvatore</creatorcontrib><creatorcontrib>Giavazzi, Fabio</creatorcontrib><creatorcontrib>Bergert, Martin</creatorcontrib><creatorcontrib>Li, Qingsen</creatorcontrib><creatorcontrib>Leoni, Marco</creatorcontrib><creatorcontrib>Disanza, Andrea</creatorcontrib><creatorcontrib>Frittoli, Emanuela</creatorcontrib><creatorcontrib>Oldani, Amanda</creatorcontrib><creatorcontrib>Martini, Emanuele</creatorcontrib><creatorcontrib>Lendenmann, Tobias</creatorcontrib><creatorcontrib>Deflorian, Gianluca</creatorcontrib><creatorcontrib>Beznoussenko, Galina V.</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><creatorcontrib>Ong, Kok Haur</creatorcontrib><creatorcontrib>Uroz, Marina</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Parazzoli, Dario</creatorcontrib><creatorcontrib>Maiuri, Paolo</creatorcontrib><creatorcontrib>Yu, Weimiao</creatorcontrib><creatorcontrib>Ferrari, Aldo</creatorcontrib><creatorcontrib>Cerbino, Roberto</creatorcontrib><creatorcontrib>Scita, Giorgio</creatorcontrib><title>Endocytic reawakening of motility in jammed epithelia</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.
Increased cellular expression of RAB5A, an important regulator of endocytic processes, brings epithelial cells from a jammed state to coordinated motion, and can facilitate wound closure, gastrulation and migration in constrained environments.</description><subject>631/57/1461</subject><subject>631/80/84/2334</subject><subject>Biomaterials</subject><subject>Biomechanical Phenomena</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - metabolism</subject><subject>Cell motility</subject><subject>Computational fluid dynamics</subject><subject>Condensed Matter Physics</subject><subject>Dynamics</subject><subject>Efflux</subject><subject>Endocytosis</subject><subject>Epiteli</subject><subject>Epithelium</subject><subject>Epithelium - metabolism</subject><subject>Fluids</subject><subject>Humans</subject><subject>Materials Science</subject><subject>Migration</subject><subject>Monolayers</subject><subject>Motilitat cel·lular</subject><subject>Motility</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Proteins</subject><subject>Proteïnes</subject><subject>rab5 GTP-Binding Proteins - metabolism</subject><subject>Rigidity</subject><subject>Traction</subject><subject>Velocity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><recordid>eNqFkclOHDEQhq0oEVuQeIKoJS5wGPDe7gtShMgiIeVCzpbHXR48dNsT2x00bx_DDBPCJQcvpfrqL7t-hE4IviCYqcswmsIVV-_QAeGtnHEp8fvtnRBK99FhzkuMKRFC7qF9qggTVPIDJG5CH-26eNskMI_mAYIPiya6ZozFD76sGx-apRlH6BtY-XIPgzcf0QdnhgzH2_MI_fxyc3f9bXb74-v368-3MysFKTODacth3nEn5lQY6XrJpJk7TAxTyvWtNbiG1oLsVQ-2bTmvG8OOUtc5wY7Q1UZ3Nc3rAyyEksygV8mPJq11NF7_mwn-Xi_iby04brngVYBsBGyerE5gIVlTngt3wdOiuKWaYSlJW2vOtk1T_DVBLnr02cIwmABxypp0mFOBiWT_R5VklHSS4YqevkGXcUqhTq9SHWWk65T4K2hTzDmB2_2VYP1ktX6xuqKfXs9mB754W4HzDZBrKiwgver4VuwPB4OyZg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Malinverno, Chiara</creator><creator>Corallino, Salvatore</creator><creator>Giavazzi, Fabio</creator><creator>Bergert, Martin</creator><creator>Li, Qingsen</creator><creator>Leoni, Marco</creator><creator>Disanza, Andrea</creator><creator>Frittoli, Emanuela</creator><creator>Oldani, Amanda</creator><creator>Martini, Emanuele</creator><creator>Lendenmann, Tobias</creator><creator>Deflorian, Gianluca</creator><creator>Beznoussenko, Galina V.</creator><creator>Poulikakos, Dimos</creator><creator>Ong, Kok Haur</creator><creator>Uroz, Marina</creator><creator>Trepat, Xavier</creator><creator>Parazzoli, Dario</creator><creator>Maiuri, Paolo</creator><creator>Yu, Weimiao</creator><creator>Ferrari, Aldo</creator><creator>Cerbino, Roberto</creator><creator>Scita, Giorgio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>XX2</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7984-1889</orcidid><orcidid>https://orcid.org/0000-0003-0434-7741</orcidid></search><sort><creationdate>20170501</creationdate><title>Endocytic reawakening of motility in jammed epithelia</title><author>Malinverno, Chiara ; Corallino, Salvatore ; Giavazzi, Fabio ; Bergert, Martin ; Li, Qingsen ; Leoni, Marco ; Disanza, Andrea ; Frittoli, Emanuela ; Oldani, Amanda ; Martini, Emanuele ; Lendenmann, Tobias ; Deflorian, Gianluca ; Beznoussenko, Galina V. ; Poulikakos, Dimos ; Ong, Kok Haur ; Uroz, Marina ; Trepat, Xavier ; Parazzoli, Dario ; Maiuri, Paolo ; Yu, Weimiao ; Ferrari, Aldo ; Cerbino, Roberto ; Scita, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c651t-a0274eb94f5b25a6fd636abf01a388fd7ca0abfcce6d8dec7744c7730f22f9f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/57/1461</topic><topic>631/80/84/2334</topic><topic>Biomaterials</topic><topic>Biomechanical Phenomena</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - metabolism</topic><topic>Cell motility</topic><topic>Computational fluid dynamics</topic><topic>Condensed Matter Physics</topic><topic>Dynamics</topic><topic>Efflux</topic><topic>Endocytosis</topic><topic>Epiteli</topic><topic>Epithelium</topic><topic>Epithelium - metabolism</topic><topic>Fluids</topic><topic>Humans</topic><topic>Materials Science</topic><topic>Migration</topic><topic>Monolayers</topic><topic>Motilitat cel·lular</topic><topic>Motility</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Proteins</topic><topic>Proteïnes</topic><topic>rab5 GTP-Binding Proteins - metabolism</topic><topic>Rigidity</topic><topic>Traction</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malinverno, Chiara</creatorcontrib><creatorcontrib>Corallino, Salvatore</creatorcontrib><creatorcontrib>Giavazzi, Fabio</creatorcontrib><creatorcontrib>Bergert, Martin</creatorcontrib><creatorcontrib>Li, Qingsen</creatorcontrib><creatorcontrib>Leoni, Marco</creatorcontrib><creatorcontrib>Disanza, Andrea</creatorcontrib><creatorcontrib>Frittoli, Emanuela</creatorcontrib><creatorcontrib>Oldani, Amanda</creatorcontrib><creatorcontrib>Martini, Emanuele</creatorcontrib><creatorcontrib>Lendenmann, Tobias</creatorcontrib><creatorcontrib>Deflorian, Gianluca</creatorcontrib><creatorcontrib>Beznoussenko, Galina V.</creatorcontrib><creatorcontrib>Poulikakos, Dimos</creatorcontrib><creatorcontrib>Ong, Kok Haur</creatorcontrib><creatorcontrib>Uroz, Marina</creatorcontrib><creatorcontrib>Trepat, Xavier</creatorcontrib><creatorcontrib>Parazzoli, Dario</creatorcontrib><creatorcontrib>Maiuri, Paolo</creatorcontrib><creatorcontrib>Yu, Weimiao</creatorcontrib><creatorcontrib>Ferrari, Aldo</creatorcontrib><creatorcontrib>Cerbino, Roberto</creatorcontrib><creatorcontrib>Scita, Giorgio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malinverno, Chiara</au><au>Corallino, Salvatore</au><au>Giavazzi, Fabio</au><au>Bergert, Martin</au><au>Li, Qingsen</au><au>Leoni, Marco</au><au>Disanza, Andrea</au><au>Frittoli, Emanuela</au><au>Oldani, Amanda</au><au>Martini, Emanuele</au><au>Lendenmann, Tobias</au><au>Deflorian, Gianluca</au><au>Beznoussenko, Galina V.</au><au>Poulikakos, Dimos</au><au>Ong, Kok Haur</au><au>Uroz, Marina</au><au>Trepat, Xavier</au><au>Parazzoli, Dario</au><au>Maiuri, Paolo</au><au>Yu, Weimiao</au><au>Ferrari, Aldo</au><au>Cerbino, Roberto</au><au>Scita, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endocytic reawakening of motility in jammed epithelia</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>16</volume><issue>5</issue><spage>587</spage><epage>596</epage><pages>587-596</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.
Increased cellular expression of RAB5A, an important regulator of endocytic processes, brings epithelial cells from a jammed state to coordinated motion, and can facilitate wound closure, gastrulation and migration in constrained environments.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28135264</pmid><doi>10.1038/nmat4848</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7984-1889</orcidid><orcidid>https://orcid.org/0000-0003-0434-7741</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2017-05, Vol.16 (5), p.587-596 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5407454 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Recercat; Nature |
subjects | 631/57/1461 631/80/84/2334 Biomaterials Biomechanical Phenomena Cell Line, Tumor Cell Membrane - metabolism Cell motility Computational fluid dynamics Condensed Matter Physics Dynamics Efflux Endocytosis Epiteli Epithelium Epithelium - metabolism Fluids Humans Materials Science Migration Monolayers Motilitat cel·lular Motility Nanotechnology Optical and Electronic Materials Phase transitions Proteins Proteïnes rab5 GTP-Binding Proteins - metabolism Rigidity Traction Velocity |
title | Endocytic reawakening of motility in jammed epithelia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endocytic%20reawakening%20of%20motility%20in%20jammed%20epithelia&rft.jtitle=Nature%20materials&rft.au=Malinverno,%20Chiara&rft.date=2017-05-01&rft.volume=16&rft.issue=5&rft.spage=587&rft.epage=596&rft.pages=587-596&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4848&rft_dat=%3Cproquest_pubme%3E1863219630%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1892319985&rft_id=info:pmid/28135264&rfr_iscdi=true |