Susceptibility to high-altitude pulmonary edema is associated with a more uniform distribution of regional specific ventilation
High-altitude pulmonary edema (HAPE) is a potentially fatal condition affecting high-altitude sojourners. The biggest predictor of HAPE development is a history of prior HAPE. Magnetic resonance imaging (MRI) shows that HAPE-susceptible (with a history of HAPE), but not HAPE-resistant (with a histor...
Gespeichert in:
Veröffentlicht in: | Journal of applied physiology (1985) 2017-04, Vol.122 (4), p.844-852 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-altitude pulmonary edema (HAPE) is a potentially fatal condition affecting high-altitude sojourners. The biggest predictor of HAPE development is a history of prior HAPE. Magnetic resonance imaging (MRI) shows that HAPE-susceptible (with a history of HAPE), but not HAPE-resistant (with a history of repeated ascents without illness) individuals develop greater heterogeneity of regional pulmonary perfusion breathing hypoxic gas (O
= 12.5%), consistent with uneven hypoxic pulmonary vasoconstriction (HPV). Why HPV is uneven in HAPE-susceptible individuals is unknown but may arise from regionally heterogeneous ventilation resulting in an uneven stimulus to HPV. We tested the hypothesis that ventilation is more heterogeneous in HAPE-susceptible subjects (
= 6) compared with HAPE-resistant controls (
= 7). MRI specific ventilation imaging (SVI) was used to measure regional specific ventilation and the relative dispersion (SD/mean) of SVI used to quantify baseline heterogeneity. Ventilation heterogeneity from conductive and respiratory airways was measured in normoxia and hypoxia (O
= 12.5%) using multiple-breath washout and heterogeneity quantified from the indexes S
and S
, respectively. Contrary to our hypothesis, HAPE-susceptible subjects had significantly lower relative dispersion of specific ventilation than the HAPE-resistant controls [susceptible = 1.33 ± 0.67 (SD), resistant = 2.36 ± 0.98,
= 0.05], and S
tended to be more uniform (susceptible = 0.085 ± 0.009, resistant = 0.113 ± 0.030,
= 0.07). S
was not significantly different between groups (susceptible = 0.019 ± 0.007, resistant = 0.020 ± 0.004,
= 0.67). S
and S
did not change significantly in hypoxia (
= 0.56 and 0.19, respectively). In conclusion, ventilation heterogeneity does not change with short-term hypoxia irrespective of HAPE susceptibility, and lesser rather than greater ventilation heterogeneity is observed in HAPE-susceptible subjects. This suggests that the basis for uneven HPV in HAPE involves vascular phenomena.
Uneven hypoxic pulmonary vasoconstriction (HPV) is thought to incite high-altitude pulmonary edema (HAPE). We evaluated whether greater heterogeneity of ventilation is also a feature of HAPE-susceptible subjects compared with HAPE-resistant subjects. Contrary to our hypothesis, ventilation heterogeneity was less in HAPE-susceptible subjects and unaffected by hypoxia, suggesting a vascular basis for uneven HPV. |
---|---|
ISSN: | 8750-7587 1522-1601 |
DOI: | 10.1152/japplphysiol.00494.2016 |