Adenosine receptor-dependent signaling is not obligatory for normobaric and hypobaric hypoxia-induced cerebral vasodilation in humans

Hypoxia increases cerebral blood flow (CBF) with the underlying signaling processes potentially including adenosine. A randomized, double-blinded, and placebo-controlled design, was implemented to determine if adenosine receptor antagonism (theophylline, 3.75 mg/Kg) would reduce the CBF response to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2017-04, Vol.122 (4), p.795-808
Hauptverfasser: Hoiland, Ryan L, Bain, Anthony R, Tymko, Michael M, Rieger, Mathew G, Howe, Connor A, Willie, Christopher K, Hansen, Alex B, Flück, Daniela, Wildfong, Kevin W, Stembridge, Mike, Subedi, Prajan, Anholm, James, Ainslie, Philip N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hypoxia increases cerebral blood flow (CBF) with the underlying signaling processes potentially including adenosine. A randomized, double-blinded, and placebo-controlled design, was implemented to determine if adenosine receptor antagonism (theophylline, 3.75 mg/Kg) would reduce the CBF response to normobaric and hypobaric hypoxia. In 12 participants the partial pressures of end-tidal oxygen ([Formula: see text]) and carbon dioxide ([Formula: see text]), ventilation (pneumotachography), blood pressure (finger photoplethysmography), heart rate (electrocardiogram), CBF (duplex ultrasound), and intracranial blood velocities (transcranial Doppler ultrasound) were measured during 5-min stages of isocapnic hypoxia at sea level (98, 90, 80, and 70% [Formula: see text]). Ventilation, [Formula: see text] and [Formula: see text], blood pressure, heart rate, and CBF were also measured upon exposure (128 ± 31 min following arrival) to high altitude (3,800 m) and 6 h following theophylline administration. At sea level, although the CBF response to hypoxia was unaltered pre- and postplacebo, it was reduced following theophylline ( < 0.01), a finding explained by a lower [Formula: see text] ( < 0.01). Upon mathematical correction for [Formula: see text], the CBF response to hypoxia was unaltered following theophylline. Cerebrovascular reactivity to hypoxia (i.e., response slope) was not different between trials, irrespective of [Formula: see text] At high altitude, theophylline ( = 6) had no effect on CBF compared with placebo ( = 6) when end-tidal gases were comparable ( > 0.05). We conclude that adenosine receptor-dependent signaling is not obligatory for cerebral hypoxic vasodilation in humans. The signaling pathways that regulate human cerebral blood flow in hypoxia remain poorly understood. Using a randomized, double-blinded, and placebo-controlled study design, we determined that adenosine receptor-dependent signaling is not obligatory for the regulation of human cerebral blood flow at sea level; these findings also extend to high altitude.
ISSN:8750-7587
1522-1601
DOI:10.1152/japplphysiol.00840.2016