Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales

[Display omitted] Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2017-04, Vol.52, p.21-32
Hauptverfasser: Godwin, Alan R.F., Starborg, Tobias, Sherratt, Michael J., Roseman, Alan M., Baldock, Clair
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue
container_start_page 21
container_title Acta biomaterialia
container_volume 52
creator Godwin, Alan R.F.
Starborg, Tobias
Sherratt, Michael J.
Roseman, Alan M.
Baldock, Clair
description [Display omitted] Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.
doi_str_mv 10.1016/j.actbio.2016.12.023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5402720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706116306912</els_id><sourcerecordid>1852667228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-fccf4b68040ac21303b1d0b1a8da756a609de94319b6ac1958b6faec4337e85a3</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSNERUvhDRCyxIZNUv8kjrNBQi2USpXYAFtr4kwSXxK72L6VeHt8ldJCF13Zozlz7DNfUbxhtGKUybNdBSb11lc8VxXjFeXiWXHCVKvKtpHqeb63NS9bKtlx8TLGHaVCMa5eFMe87RopJD0pfl7gaJ11E0kzktligGBma2AhPkzgbIRkvSN-JMYvC0zoyI8rsloT_Gj7YJdIIBEHzq-YApLkt-ZWLeimNJOY_TC-Ko5GWCK-vjtPi--fP307_1Jef728Ov94XZqGq1SOxox1LxWtKRjOBBU9G2jPQA2Qg4Gk3YBdLVjXSzCsa1QvR0BTC9GiakCcFh8235t9v-Jg0KUAi74JdoXwW3uw-v-Os7Oe_K1uaspbTrPB-zuD4H_tMSa92mgwx3fo91Ez1XApW85Vlr57JN35fXA5nmYdk6zmtD2o6k2VFxNjwPH-M4zqA0290xtNfaCpGdeZZh57-2-Q-6G_-B6SYl7nbYano7HoDA42oEl68PbpF_4AUiy07A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1916142078</pqid></control><display><type>article</type><title>Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Godwin, Alan R.F. ; Starborg, Tobias ; Sherratt, Michael J. ; Roseman, Alan M. ; Baldock, Clair</creator><creatorcontrib>Godwin, Alan R.F. ; Starborg, Tobias ; Sherratt, Michael J. ; Roseman, Alan M. ; Baldock, Clair</creatorcontrib><description>[Display omitted] Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.</description><identifier>ISSN: 1742-7061</identifier><identifier>ISSN: 1878-7568</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2016.12.023</identifier><identifier>PMID: 27956360</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adults ; Articular cartilage ; Assemblies ; Blood vessels ; Bones ; Cartilage ; Cartilage (articular) ; Collagen ; Collagen Type IV - chemistry ; Collagen Type IV - ultrastructure ; Collagen VI ; Computer Simulation ; Connective tissues ; Critical components ; Design engineering ; Extracellular matrix ; Extracellular Matrix Proteins - chemistry ; Extracellular Matrix Proteins - ultrastructure ; Fibrils ; Full Length ; Head ; Imaging techniques ; Lungs ; Mechanical stimuli ; Medical imaging ; Microfibrils ; Microfibrils - chemistry ; Microfibrils - ultrastructure ; Models, Chemical ; Models, Molecular ; Nanostructure ; Pericellular matrix ; Protein Conformation ; Regenerative medicine ; SBF-SEM ; Scaffolds ; Scanning electron microscopy ; Signal transduction ; Signaling ; Skin ; Tissue engineering ; Tomography ; Transmission electron microscopy</subject><ispartof>Acta biomaterialia, 2017-04, Vol.52, p.21-32</ispartof><rights>2016 Acta Materialia Inc.</rights><rights>Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 1, 2017</rights><rights>2016 Elsevier Ltd. All rights reserved. 2016 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-fccf4b68040ac21303b1d0b1a8da756a609de94319b6ac1958b6faec4337e85a3</citedby><cites>FETCH-LOGICAL-c528t-fccf4b68040ac21303b1d0b1a8da756a609de94319b6ac1958b6faec4337e85a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1742706116306912$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27956360$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Godwin, Alan R.F.</creatorcontrib><creatorcontrib>Starborg, Tobias</creatorcontrib><creatorcontrib>Sherratt, Michael J.</creatorcontrib><creatorcontrib>Roseman, Alan M.</creatorcontrib><creatorcontrib>Baldock, Clair</creatorcontrib><title>Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.</description><subject>Adults</subject><subject>Articular cartilage</subject><subject>Assemblies</subject><subject>Blood vessels</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Cartilage (articular)</subject><subject>Collagen</subject><subject>Collagen Type IV - chemistry</subject><subject>Collagen Type IV - ultrastructure</subject><subject>Collagen VI</subject><subject>Computer Simulation</subject><subject>Connective tissues</subject><subject>Critical components</subject><subject>Design engineering</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix Proteins - chemistry</subject><subject>Extracellular Matrix Proteins - ultrastructure</subject><subject>Fibrils</subject><subject>Full Length</subject><subject>Head</subject><subject>Imaging techniques</subject><subject>Lungs</subject><subject>Mechanical stimuli</subject><subject>Medical imaging</subject><subject>Microfibrils</subject><subject>Microfibrils - chemistry</subject><subject>Microfibrils - ultrastructure</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Nanostructure</subject><subject>Pericellular matrix</subject><subject>Protein Conformation</subject><subject>Regenerative medicine</subject><subject>SBF-SEM</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Skin</subject><subject>Tissue engineering</subject><subject>Tomography</subject><subject>Transmission electron microscopy</subject><issn>1742-7061</issn><issn>1878-7568</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQhSNERUvhDRCyxIZNUv8kjrNBQi2USpXYAFtr4kwSXxK72L6VeHt8ldJCF13Zozlz7DNfUbxhtGKUybNdBSb11lc8VxXjFeXiWXHCVKvKtpHqeb63NS9bKtlx8TLGHaVCMa5eFMe87RopJD0pfl7gaJ11E0kzktligGBma2AhPkzgbIRkvSN-JMYvC0zoyI8rsloT_Gj7YJdIIBEHzq-YApLkt-ZWLeimNJOY_TC-Ko5GWCK-vjtPi--fP307_1Jef728Ov94XZqGq1SOxox1LxWtKRjOBBU9G2jPQA2Qg4Gk3YBdLVjXSzCsa1QvR0BTC9GiakCcFh8235t9v-Jg0KUAi74JdoXwW3uw-v-Os7Oe_K1uaspbTrPB-zuD4H_tMSa92mgwx3fo91Ez1XApW85Vlr57JN35fXA5nmYdk6zmtD2o6k2VFxNjwPH-M4zqA0290xtNfaCpGdeZZh57-2-Q-6G_-B6SYl7nbYano7HoDA42oEl68PbpF_4AUiy07A</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Godwin, Alan R.F.</creator><creator>Starborg, Tobias</creator><creator>Sherratt, Michael J.</creator><creator>Roseman, Alan M.</creator><creator>Baldock, Clair</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170401</creationdate><title>Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales</title><author>Godwin, Alan R.F. ; Starborg, Tobias ; Sherratt, Michael J. ; Roseman, Alan M. ; Baldock, Clair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-fccf4b68040ac21303b1d0b1a8da756a609de94319b6ac1958b6faec4337e85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adults</topic><topic>Articular cartilage</topic><topic>Assemblies</topic><topic>Blood vessels</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Cartilage (articular)</topic><topic>Collagen</topic><topic>Collagen Type IV - chemistry</topic><topic>Collagen Type IV - ultrastructure</topic><topic>Collagen VI</topic><topic>Computer Simulation</topic><topic>Connective tissues</topic><topic>Critical components</topic><topic>Design engineering</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix Proteins - chemistry</topic><topic>Extracellular Matrix Proteins - ultrastructure</topic><topic>Fibrils</topic><topic>Full Length</topic><topic>Head</topic><topic>Imaging techniques</topic><topic>Lungs</topic><topic>Mechanical stimuli</topic><topic>Medical imaging</topic><topic>Microfibrils</topic><topic>Microfibrils - chemistry</topic><topic>Microfibrils - ultrastructure</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Nanostructure</topic><topic>Pericellular matrix</topic><topic>Protein Conformation</topic><topic>Regenerative medicine</topic><topic>SBF-SEM</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Skin</topic><topic>Tissue engineering</topic><topic>Tomography</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godwin, Alan R.F.</creatorcontrib><creatorcontrib>Starborg, Tobias</creatorcontrib><creatorcontrib>Sherratt, Michael J.</creatorcontrib><creatorcontrib>Roseman, Alan M.</creatorcontrib><creatorcontrib>Baldock, Clair</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godwin, Alan R.F.</au><au>Starborg, Tobias</au><au>Sherratt, Michael J.</au><au>Roseman, Alan M.</au><au>Baldock, Clair</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>52</volume><spage>21</spage><epage>32</epage><pages>21-32</pages><issn>1742-7061</issn><issn>1878-7568</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Extracellular matrix microfibrils are critical components of connective tissues with a wide range of mechanical and cellular signalling functions. Collagen VI is a heteromeric network-forming collagen which is expressed in tissues such as skin, lung, blood vessels and articular cartilage where it anchors cells into the matrix allowing for transduction of biochemical and mechanical signals. It is not understood how collagen VI is arranged into microfibrils or how these microfibrils are arranged into tissues. Therefore we have characterised the hierarchical organisation of collagen VI across multiple length scales. The frozen hydrated nanostructure of purified collagen VI microfibrils was reconstructed using cryo-TEM. The bead region has a compact hollow head and flexible tail regions linked by the collagenous interbead region. Serial block face SEM imaging coupled with electron tomography of the pericellular matrix (PCM) of murine articular cartilage revealed that the PCM has a meshwork-like organisation formed from globular densities ∼30nm in diameter. These approaches can characterise structures spanning nanometer to millimeter length scales to define the nanostructure of individual collagen VI microfibrils and the micro-structural organisation of these fibrils within tissues to help in the future design of better mimetics for tissue engineering. Cartilage is a connective tissue rich in extracellular matrix molecules and is tough and compressive to cushion the bones of joints. However, in adults cartilage is poorly repaired after injury and so this is an important target for tissue engineering. Many connective tissues contain collagen VI, which forms microfibrils and networks but we understand very little about these assemblies or the tissue structures they form. Therefore, we have use complementary imaging techniques to image collagen VI microfibrils from the nano-scale to the micro-scale in order to understand the structure and the assemblies it forms. These findings will help to inform the future design of scaffolds to mimic connective tissues in regenerative medicine applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27956360</pmid><doi>10.1016/j.actbio.2016.12.023</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2017-04, Vol.52, p.21-32
issn 1742-7061
1878-7568
1878-7568
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5402720
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adults
Articular cartilage
Assemblies
Blood vessels
Bones
Cartilage
Cartilage (articular)
Collagen
Collagen Type IV - chemistry
Collagen Type IV - ultrastructure
Collagen VI
Computer Simulation
Connective tissues
Critical components
Design engineering
Extracellular matrix
Extracellular Matrix Proteins - chemistry
Extracellular Matrix Proteins - ultrastructure
Fibrils
Full Length
Head
Imaging techniques
Lungs
Mechanical stimuli
Medical imaging
Microfibrils
Microfibrils - chemistry
Microfibrils - ultrastructure
Models, Chemical
Models, Molecular
Nanostructure
Pericellular matrix
Protein Conformation
Regenerative medicine
SBF-SEM
Scaffolds
Scanning electron microscopy
Signal transduction
Signaling
Skin
Tissue engineering
Tomography
Transmission electron microscopy
title Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20hierarchical%20organisation%20of%20collagen%20VI%20microfibrils%20at%20nanometre%20to%20micrometre%20length%20scales&rft.jtitle=Acta%20biomaterialia&rft.au=Godwin,%20Alan%20R.F.&rft.date=2017-04-01&rft.volume=52&rft.spage=21&rft.epage=32&rft.pages=21-32&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2016.12.023&rft_dat=%3Cproquest_pubme%3E1852667228%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1916142078&rft_id=info:pmid/27956360&rft_els_id=S1742706116306912&rfr_iscdi=true