Macrocyclic shape-persistency of cyclo[6]aramide results in enhanced multipoint recognition for the highly efficient template-directed synthesis of rotaxanes

Examples of using two-dimensional shape-persistent macrocycles, those having noncollapsible and geometrically well-defined skeletons, for constructing mechanically interlocked molecules are scarce, which contrasts the many applications of these macrocycles in molecular recognition and functional sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) 2017-03, Vol.8 (3), p.2091-2100
Hauptverfasser: Li, Xiaowei, Yuan, Xiangyang, Deng, Pengchi, Chen, Lixi, Ren, Yi, Wang, Chengyuan, Wu, Lixin, Feng, Wen, Gong, Bing, Yuan, Lihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2100
container_issue 3
container_start_page 2091
container_title Chemical science (Cambridge)
container_volume 8
creator Li, Xiaowei
Yuan, Xiangyang
Deng, Pengchi
Chen, Lixi
Ren, Yi
Wang, Chengyuan
Wu, Lixin
Feng, Wen
Gong, Bing
Yuan, Lihua
description Examples of using two-dimensional shape-persistent macrocycles, those having noncollapsible and geometrically well-defined skeletons, for constructing mechanically interlocked molecules are scarce, which contrasts the many applications of these macrocycles in molecular recognition and functional self-assembly. Herein, we report the crucial role played by macrocyclic shape-persistency in enhancing multipoint recognition for the highly efficient template-directed synthesis of rotaxanes. Cyclo[6]aramides, with a near-planar conformation, are found to act as powerful hosts that bind bipyridinium salts with high affinities. This unique recognition module, composed of two macrocyclic molecules with one bipyridinium ion thread through the cavity, is observed both in the solid state and in solution, with unusually high binding constants ranging from ∼10 M to ∼10 M in acetone. The high efficacy of this recognition motif is embodied by the formation of compact [3]rotaxanes in excellent yields based on either a "click-capping" (91%) or "facile one-pot" (85%) approach, underscoring the great advantage of using H-bonded aromatic amide macrocycles for the highly efficient template-directed synthesis of mechanically interlocked structures. Furthermore, three cyclo[6]aramides bearing different peripheral chains demonstrate high specificity in the synthesis of a [3]rotaxane from and , and a [2]rotaxane from a "facile one-pot" approach, in each case as the only isolated product. Analysis of the crystal structure of the [3]rotaxane reveals a highly compact binding mode that would be difficult to access using other macrocycles with a flexible backbone. Leveraging this unique recognition motif, resulting from the shape-persistency of these oligoamide macrocycles, in the template-directed synthesis of compact rotaxanes may open up new opportunities for the development of higher order interlocked molecules and artificial molecular machines.
doi_str_mv 10.1039/c6sc04714a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5399641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1893553009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-40b92e5f200717f9113870123ddca201ccba56263e81aff2f13d21f3d22fc9923</originalsourceid><addsrcrecordid>eNqNkU1vFSEUhonR2Kbtxh9gWBqTUQ7MFxuT5qZ-JDVdqCtjCJc53MHMwAhc4_yY_le5tt7YnSyA8D55zzm8hDwD9gqYkK9NmwyrO6j1I3LKWQ1V2wj5-Hjn7IRcpPSdlSUENLx7Sk54XzcguDwltx-1icGsZnKGplEvWC0Yk0sZvVlpsPSgha_tNx317AakEdN-yok6T9GP2hsc6Fxe3BKcz0U2YedddsFTGyLNI9LR7cZppWitMw4LlHFeJp2xGlzhc3FIqy9kqXsoGUPWv7THdE6eWD0lvLg_z8iXt1efN--r65t3HzaX15Wpuy5XNdtKjo3ljHXQWQkg-o4BF8NgNGdgzFY3LW8F9qCt5RbEwMGWjVsjJRdn5M2d77LfzjiY0mPUk1qim3VcVdBOPVS8G9Uu_FTlq2VbQzF4cW8Qw489pqxmlwxOU5ki7JOCXoqmEYzJ_0D7GnjDoSvoyzu0RJRSRHvsCJg6pK827afNn_QvC_z83xmO6N-sxW-5Fq89</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884125217</pqid></control><display><type>article</type><title>Macrocyclic shape-persistency of cyclo[6]aramide results in enhanced multipoint recognition for the highly efficient template-directed synthesis of rotaxanes</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Li, Xiaowei ; Yuan, Xiangyang ; Deng, Pengchi ; Chen, Lixi ; Ren, Yi ; Wang, Chengyuan ; Wu, Lixin ; Feng, Wen ; Gong, Bing ; Yuan, Lihua</creator><creatorcontrib>Li, Xiaowei ; Yuan, Xiangyang ; Deng, Pengchi ; Chen, Lixi ; Ren, Yi ; Wang, Chengyuan ; Wu, Lixin ; Feng, Wen ; Gong, Bing ; Yuan, Lihua</creatorcontrib><description>Examples of using two-dimensional shape-persistent macrocycles, those having noncollapsible and geometrically well-defined skeletons, for constructing mechanically interlocked molecules are scarce, which contrasts the many applications of these macrocycles in molecular recognition and functional self-assembly. Herein, we report the crucial role played by macrocyclic shape-persistency in enhancing multipoint recognition for the highly efficient template-directed synthesis of rotaxanes. Cyclo[6]aramides, with a near-planar conformation, are found to act as powerful hosts that bind bipyridinium salts with high affinities. This unique recognition module, composed of two macrocyclic molecules with one bipyridinium ion thread through the cavity, is observed both in the solid state and in solution, with unusually high binding constants ranging from ∼10 M to ∼10 M in acetone. The high efficacy of this recognition motif is embodied by the formation of compact [3]rotaxanes in excellent yields based on either a "click-capping" (91%) or "facile one-pot" (85%) approach, underscoring the great advantage of using H-bonded aromatic amide macrocycles for the highly efficient template-directed synthesis of mechanically interlocked structures. Furthermore, three cyclo[6]aramides bearing different peripheral chains demonstrate high specificity in the synthesis of a [3]rotaxane from and , and a [2]rotaxane from a "facile one-pot" approach, in each case as the only isolated product. Analysis of the crystal structure of the [3]rotaxane reveals a highly compact binding mode that would be difficult to access using other macrocycles with a flexible backbone. Leveraging this unique recognition motif, resulting from the shape-persistency of these oligoamide macrocycles, in the template-directed synthesis of compact rotaxanes may open up new opportunities for the development of higher order interlocked molecules and artificial molecular machines.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/c6sc04714a</identifier><identifier>PMID: 28451329</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Backbone ; Binding ; Chemistry ; Constants ; Macrocyclic compounds ; Recognition ; Rotaxanes ; Self assembly ; Synthesis ; Synthesis (chemistry)</subject><ispartof>Chemical science (Cambridge), 2017-03, Vol.8 (3), p.2091-2100</ispartof><rights>This journal is © The Royal Society of Chemistry 2016 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-40b92e5f200717f9113870123ddca201ccba56263e81aff2f13d21f3d22fc9923</citedby><cites>FETCH-LOGICAL-c477t-40b92e5f200717f9113870123ddca201ccba56263e81aff2f13d21f3d22fc9923</cites><orcidid>0000-0002-4694-6737 ; 0000-0003-0578-4214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399641/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399641/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28451329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaowei</creatorcontrib><creatorcontrib>Yuan, Xiangyang</creatorcontrib><creatorcontrib>Deng, Pengchi</creatorcontrib><creatorcontrib>Chen, Lixi</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Wang, Chengyuan</creatorcontrib><creatorcontrib>Wu, Lixin</creatorcontrib><creatorcontrib>Feng, Wen</creatorcontrib><creatorcontrib>Gong, Bing</creatorcontrib><creatorcontrib>Yuan, Lihua</creatorcontrib><title>Macrocyclic shape-persistency of cyclo[6]aramide results in enhanced multipoint recognition for the highly efficient template-directed synthesis of rotaxanes</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Examples of using two-dimensional shape-persistent macrocycles, those having noncollapsible and geometrically well-defined skeletons, for constructing mechanically interlocked molecules are scarce, which contrasts the many applications of these macrocycles in molecular recognition and functional self-assembly. Herein, we report the crucial role played by macrocyclic shape-persistency in enhancing multipoint recognition for the highly efficient template-directed synthesis of rotaxanes. Cyclo[6]aramides, with a near-planar conformation, are found to act as powerful hosts that bind bipyridinium salts with high affinities. This unique recognition module, composed of two macrocyclic molecules with one bipyridinium ion thread through the cavity, is observed both in the solid state and in solution, with unusually high binding constants ranging from ∼10 M to ∼10 M in acetone. The high efficacy of this recognition motif is embodied by the formation of compact [3]rotaxanes in excellent yields based on either a "click-capping" (91%) or "facile one-pot" (85%) approach, underscoring the great advantage of using H-bonded aromatic amide macrocycles for the highly efficient template-directed synthesis of mechanically interlocked structures. Furthermore, three cyclo[6]aramides bearing different peripheral chains demonstrate high specificity in the synthesis of a [3]rotaxane from and , and a [2]rotaxane from a "facile one-pot" approach, in each case as the only isolated product. Analysis of the crystal structure of the [3]rotaxane reveals a highly compact binding mode that would be difficult to access using other macrocycles with a flexible backbone. Leveraging this unique recognition motif, resulting from the shape-persistency of these oligoamide macrocycles, in the template-directed synthesis of compact rotaxanes may open up new opportunities for the development of higher order interlocked molecules and artificial molecular machines.</description><subject>Backbone</subject><subject>Binding</subject><subject>Chemistry</subject><subject>Constants</subject><subject>Macrocyclic compounds</subject><subject>Recognition</subject><subject>Rotaxanes</subject><subject>Self assembly</subject><subject>Synthesis</subject><subject>Synthesis (chemistry)</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vFSEUhonR2Kbtxh9gWBqTUQ7MFxuT5qZ-JDVdqCtjCJc53MHMwAhc4_yY_le5tt7YnSyA8D55zzm8hDwD9gqYkK9NmwyrO6j1I3LKWQ1V2wj5-Hjn7IRcpPSdlSUENLx7Sk54XzcguDwltx-1icGsZnKGplEvWC0Yk0sZvVlpsPSgha_tNx317AakEdN-yok6T9GP2hsc6Fxe3BKcz0U2YedddsFTGyLNI9LR7cZppWitMw4LlHFeJp2xGlzhc3FIqy9kqXsoGUPWv7THdE6eWD0lvLg_z8iXt1efN--r65t3HzaX15Wpuy5XNdtKjo3ljHXQWQkg-o4BF8NgNGdgzFY3LW8F9qCt5RbEwMGWjVsjJRdn5M2d77LfzjiY0mPUk1qim3VcVdBOPVS8G9Uu_FTlq2VbQzF4cW8Qw489pqxmlwxOU5ki7JOCXoqmEYzJ_0D7GnjDoSvoyzu0RJRSRHvsCJg6pK827afNn_QvC_z83xmO6N-sxW-5Fq89</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Li, Xiaowei</creator><creator>Yuan, Xiangyang</creator><creator>Deng, Pengchi</creator><creator>Chen, Lixi</creator><creator>Ren, Yi</creator><creator>Wang, Chengyuan</creator><creator>Wu, Lixin</creator><creator>Feng, Wen</creator><creator>Gong, Bing</creator><creator>Yuan, Lihua</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4694-6737</orcidid><orcidid>https://orcid.org/0000-0003-0578-4214</orcidid></search><sort><creationdate>20170301</creationdate><title>Macrocyclic shape-persistency of cyclo[6]aramide results in enhanced multipoint recognition for the highly efficient template-directed synthesis of rotaxanes</title><author>Li, Xiaowei ; Yuan, Xiangyang ; Deng, Pengchi ; Chen, Lixi ; Ren, Yi ; Wang, Chengyuan ; Wu, Lixin ; Feng, Wen ; Gong, Bing ; Yuan, Lihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-40b92e5f200717f9113870123ddca201ccba56263e81aff2f13d21f3d22fc9923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Backbone</topic><topic>Binding</topic><topic>Chemistry</topic><topic>Constants</topic><topic>Macrocyclic compounds</topic><topic>Recognition</topic><topic>Rotaxanes</topic><topic>Self assembly</topic><topic>Synthesis</topic><topic>Synthesis (chemistry)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaowei</creatorcontrib><creatorcontrib>Yuan, Xiangyang</creatorcontrib><creatorcontrib>Deng, Pengchi</creatorcontrib><creatorcontrib>Chen, Lixi</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Wang, Chengyuan</creatorcontrib><creatorcontrib>Wu, Lixin</creatorcontrib><creatorcontrib>Feng, Wen</creatorcontrib><creatorcontrib>Gong, Bing</creatorcontrib><creatorcontrib>Yuan, Lihua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaowei</au><au>Yuan, Xiangyang</au><au>Deng, Pengchi</au><au>Chen, Lixi</au><au>Ren, Yi</au><au>Wang, Chengyuan</au><au>Wu, Lixin</au><au>Feng, Wen</au><au>Gong, Bing</au><au>Yuan, Lihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrocyclic shape-persistency of cyclo[6]aramide results in enhanced multipoint recognition for the highly efficient template-directed synthesis of rotaxanes</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>8</volume><issue>3</issue><spage>2091</spage><epage>2100</epage><pages>2091-2100</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Examples of using two-dimensional shape-persistent macrocycles, those having noncollapsible and geometrically well-defined skeletons, for constructing mechanically interlocked molecules are scarce, which contrasts the many applications of these macrocycles in molecular recognition and functional self-assembly. Herein, we report the crucial role played by macrocyclic shape-persistency in enhancing multipoint recognition for the highly efficient template-directed synthesis of rotaxanes. Cyclo[6]aramides, with a near-planar conformation, are found to act as powerful hosts that bind bipyridinium salts with high affinities. This unique recognition module, composed of two macrocyclic molecules with one bipyridinium ion thread through the cavity, is observed both in the solid state and in solution, with unusually high binding constants ranging from ∼10 M to ∼10 M in acetone. The high efficacy of this recognition motif is embodied by the formation of compact [3]rotaxanes in excellent yields based on either a "click-capping" (91%) or "facile one-pot" (85%) approach, underscoring the great advantage of using H-bonded aromatic amide macrocycles for the highly efficient template-directed synthesis of mechanically interlocked structures. Furthermore, three cyclo[6]aramides bearing different peripheral chains demonstrate high specificity in the synthesis of a [3]rotaxane from and , and a [2]rotaxane from a "facile one-pot" approach, in each case as the only isolated product. Analysis of the crystal structure of the [3]rotaxane reveals a highly compact binding mode that would be difficult to access using other macrocycles with a flexible backbone. Leveraging this unique recognition motif, resulting from the shape-persistency of these oligoamide macrocycles, in the template-directed synthesis of compact rotaxanes may open up new opportunities for the development of higher order interlocked molecules and artificial molecular machines.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>28451329</pmid><doi>10.1039/c6sc04714a</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4694-6737</orcidid><orcidid>https://orcid.org/0000-0003-0578-4214</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2017-03, Vol.8 (3), p.2091-2100
issn 2041-6520
2041-6539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5399641
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access
subjects Backbone
Binding
Chemistry
Constants
Macrocyclic compounds
Recognition
Rotaxanes
Self assembly
Synthesis
Synthesis (chemistry)
title Macrocyclic shape-persistency of cyclo[6]aramide results in enhanced multipoint recognition for the highly efficient template-directed synthesis of rotaxanes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrocyclic%20shape-persistency%20of%20cyclo%5B6%5Daramide%20results%20in%20enhanced%20multipoint%20recognition%20for%20the%20highly%20efficient%20template-directed%20synthesis%20of%20rotaxanes&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Li,%20Xiaowei&rft.date=2017-03-01&rft.volume=8&rft.issue=3&rft.spage=2091&rft.epage=2100&rft.pages=2091-2100&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/c6sc04714a&rft_dat=%3Cproquest_pubme%3E1893553009%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884125217&rft_id=info:pmid/28451329&rfr_iscdi=true