Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output

Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients’ life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2017-05, Vol.45 (5), p.1172-1180
Hauptverfasser: Bereuter, L., Williner, S., Pianezzi, F., Bissig, B., Buecheler, S., Burger, J., Vogel, R., Zurbuchen, A., Haeberlin, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1180
container_issue 5
container_start_page 1172
container_title Annals of biomedical engineering
container_volume 45
creator Bereuter, L.
Williner, S.
Pianezzi, F.
Bissig, B.
Buecheler, S.
Burger, J.
Vogel, R.
Zurbuchen, A.
Haeberlin, A.
description Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients’ life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implant, device replacements may be avoided and the device size may be reduced dramatically. Recently, several groups presented prototypes of implants powered by subcutaneous solar cells. However, data about the expected real-life power output of subcutaneously implanted solar cells was lacking so far. In this study, we report the first real-life validation data of energy harvesting by subcutaneous solar cells. Portable light measurement devices that feature solar cells (cell area = 3.6 cm 2 ) and continuously measure a subcutaneous solar cell’s output power were built. The measurement devices were worn by volunteers in their daily routine in summer, autumn and winter. In addition to the measured output power, influences such as season, weather and human activity were analyzed. The obtained mean power over the whole study period was 67  µ W (=19  µ W cm −2 ), which is sufficient to power e.g. a cardiac pacemaker.
doi_str_mv 10.1007/s10439-016-1774-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5397472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897376800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-f076f09691d371318e54877914134b41cca7287a154158b7af5b8cbbeb2a91e93</originalsourceid><addsrcrecordid>eNqNkk1rFEEQhhtRzBr9AV6kwYuXiVXT3x6EZYmJsJDDxpvQdM_2TCbMzqzdMwv77-0wa4iC6KkP9dTT1MtLyFuECwRQHxMCZ6YAlAUqxQv-jCxQKFYYqeVzsgAwUEgj-Rl5ldI9AKJm4iU5KzUIUKVakO-XfYjNkV67eAhpbPuG-iPdTL6aRteHYUp0M3Qu0lXouvSJLul66JviNsQd3YzT9kiHni6ruzYcnO8CPelupnE_ja_Ji9p1Kbw5vefk25fL29V1sb65-rparotKKDEWNShZg5EGt0whQx0E10oZ5Mi451hVTpVaORQchfbK1cLryvvgS2cwGHZOPs_e_eR3YVuFfoyus_vY7lw82sG19vdJ397ZZjhYwYziqsyCDydBHH5MOQe7a1OVL54jsGiAlyUCw3-j2iimpAb4D1QIxqQudUbf_4HeD1Psc2iZ0kZKKUBkCmeqikNKMdSPJyLYh0bYuRE2N8I-NMLyvPPuaTaPG78qkIFyBlIe9U2IT77-q_UnN7K_VA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889666505</pqid></control><display><type>article</type><title>Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Bereuter, L. ; Williner, S. ; Pianezzi, F. ; Bissig, B. ; Buecheler, S. ; Burger, J. ; Vogel, R. ; Zurbuchen, A. ; Haeberlin, A.</creator><creatorcontrib>Bereuter, L. ; Williner, S. ; Pianezzi, F. ; Bissig, B. ; Buecheler, S. ; Burger, J. ; Vogel, R. ; Zurbuchen, A. ; Haeberlin, A.</creatorcontrib><description>Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients’ life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implant, device replacements may be avoided and the device size may be reduced dramatically. Recently, several groups presented prototypes of implants powered by subcutaneous solar cells. However, data about the expected real-life power output of subcutaneously implanted solar cells was lacking so far. In this study, we report the first real-life validation data of energy harvesting by subcutaneous solar cells. Portable light measurement devices that feature solar cells (cell area = 3.6 cm 2 ) and continuously measure a subcutaneous solar cell’s output power were built. The measurement devices were worn by volunteers in their daily routine in summer, autumn and winter. In addition to the measured output power, influences such as season, weather and human activity were analyzed. The obtained mean power over the whole study period was 67  µ W (=19  µ W cm −2 ), which is sufficient to power e.g. a cardiac pacemaker.</description><identifier>ISSN: 0090-6964</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-016-1774-4</identifier><identifier>PMID: 28050727</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Classical Mechanics ; Devices ; Electronics - instrumentation ; Energy harvesting ; Humans ; Implants, Experimental ; Measuring instruments ; Medical devices ; Photovoltaic cells ; Seasons ; Skin ; Solar cells ; Solar Energy ; Solar power generation ; Surgical implants</subject><ispartof>Annals of biomedical engineering, 2017-05, Vol.45 (5), p.1172-1180</ispartof><rights>The Author(s) 2016</rights><rights>Annals of Biomedical Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-f076f09691d371318e54877914134b41cca7287a154158b7af5b8cbbeb2a91e93</citedby><cites>FETCH-LOGICAL-c575t-f076f09691d371318e54877914134b41cca7287a154158b7af5b8cbbeb2a91e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-016-1774-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-016-1774-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28050727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bereuter, L.</creatorcontrib><creatorcontrib>Williner, S.</creatorcontrib><creatorcontrib>Pianezzi, F.</creatorcontrib><creatorcontrib>Bissig, B.</creatorcontrib><creatorcontrib>Buecheler, S.</creatorcontrib><creatorcontrib>Burger, J.</creatorcontrib><creatorcontrib>Vogel, R.</creatorcontrib><creatorcontrib>Zurbuchen, A.</creatorcontrib><creatorcontrib>Haeberlin, A.</creatorcontrib><title>Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients’ life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implant, device replacements may be avoided and the device size may be reduced dramatically. Recently, several groups presented prototypes of implants powered by subcutaneous solar cells. However, data about the expected real-life power output of subcutaneously implanted solar cells was lacking so far. In this study, we report the first real-life validation data of energy harvesting by subcutaneous solar cells. Portable light measurement devices that feature solar cells (cell area = 3.6 cm 2 ) and continuously measure a subcutaneous solar cell’s output power were built. The measurement devices were worn by volunteers in their daily routine in summer, autumn and winter. In addition to the measured output power, influences such as season, weather and human activity were analyzed. The obtained mean power over the whole study period was 67  µ W (=19  µ W cm −2 ), which is sufficient to power e.g. a cardiac pacemaker.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Classical Mechanics</subject><subject>Devices</subject><subject>Electronics - instrumentation</subject><subject>Energy harvesting</subject><subject>Humans</subject><subject>Implants, Experimental</subject><subject>Measuring instruments</subject><subject>Medical devices</subject><subject>Photovoltaic cells</subject><subject>Seasons</subject><subject>Skin</subject><subject>Solar cells</subject><subject>Solar Energy</subject><subject>Solar power generation</subject><subject>Surgical implants</subject><issn>0090-6964</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1rFEEQhhtRzBr9AV6kwYuXiVXT3x6EZYmJsJDDxpvQdM_2TCbMzqzdMwv77-0wa4iC6KkP9dTT1MtLyFuECwRQHxMCZ6YAlAUqxQv-jCxQKFYYqeVzsgAwUEgj-Rl5ldI9AKJm4iU5KzUIUKVakO-XfYjNkV67eAhpbPuG-iPdTL6aRteHYUp0M3Qu0lXouvSJLul66JviNsQd3YzT9kiHni6ruzYcnO8CPelupnE_ja_Ji9p1Kbw5vefk25fL29V1sb65-rparotKKDEWNShZg5EGt0whQx0E10oZ5Mi451hVTpVaORQchfbK1cLryvvgS2cwGHZOPs_e_eR3YVuFfoyus_vY7lw82sG19vdJ397ZZjhYwYziqsyCDydBHH5MOQe7a1OVL54jsGiAlyUCw3-j2iimpAb4D1QIxqQudUbf_4HeD1Psc2iZ0kZKKUBkCmeqikNKMdSPJyLYh0bYuRE2N8I-NMLyvPPuaTaPG78qkIFyBlIe9U2IT77-q_UnN7K_VA</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Bereuter, L.</creator><creator>Williner, S.</creator><creator>Pianezzi, F.</creator><creator>Bissig, B.</creator><creator>Buecheler, S.</creator><creator>Burger, J.</creator><creator>Vogel, R.</creator><creator>Zurbuchen, A.</creator><creator>Haeberlin, A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170501</creationdate><title>Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output</title><author>Bereuter, L. ; Williner, S. ; Pianezzi, F. ; Bissig, B. ; Buecheler, S. ; Burger, J. ; Vogel, R. ; Zurbuchen, A. ; Haeberlin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-f076f09691d371318e54877914134b41cca7287a154158b7af5b8cbbeb2a91e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Classical Mechanics</topic><topic>Devices</topic><topic>Electronics - instrumentation</topic><topic>Energy harvesting</topic><topic>Humans</topic><topic>Implants, Experimental</topic><topic>Measuring instruments</topic><topic>Medical devices</topic><topic>Photovoltaic cells</topic><topic>Seasons</topic><topic>Skin</topic><topic>Solar cells</topic><topic>Solar Energy</topic><topic>Solar power generation</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bereuter, L.</creatorcontrib><creatorcontrib>Williner, S.</creatorcontrib><creatorcontrib>Pianezzi, F.</creatorcontrib><creatorcontrib>Bissig, B.</creatorcontrib><creatorcontrib>Buecheler, S.</creatorcontrib><creatorcontrib>Burger, J.</creatorcontrib><creatorcontrib>Vogel, R.</creatorcontrib><creatorcontrib>Zurbuchen, A.</creatorcontrib><creatorcontrib>Haeberlin, A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bereuter, L.</au><au>Williner, S.</au><au>Pianezzi, F.</au><au>Bissig, B.</au><au>Buecheler, S.</au><au>Burger, J.</au><au>Vogel, R.</au><au>Zurbuchen, A.</au><au>Haeberlin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>45</volume><issue>5</issue><spage>1172</spage><epage>1180</epage><pages>1172-1180</pages><issn>0090-6964</issn><eissn>1573-9686</eissn><abstract>Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients’ life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implant, device replacements may be avoided and the device size may be reduced dramatically. Recently, several groups presented prototypes of implants powered by subcutaneous solar cells. However, data about the expected real-life power output of subcutaneously implanted solar cells was lacking so far. In this study, we report the first real-life validation data of energy harvesting by subcutaneous solar cells. Portable light measurement devices that feature solar cells (cell area = 3.6 cm 2 ) and continuously measure a subcutaneous solar cell’s output power were built. The measurement devices were worn by volunteers in their daily routine in summer, autumn and winter. In addition to the measured output power, influences such as season, weather and human activity were analyzed. The obtained mean power over the whole study period was 67  µ W (=19  µ W cm −2 ), which is sufficient to power e.g. a cardiac pacemaker.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28050727</pmid><doi>10.1007/s10439-016-1774-4</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2017-05, Vol.45 (5), p.1172-1180
issn 0090-6964
1573-9686
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5397472
source MEDLINE; SpringerLink Journals
subjects Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Devices
Electronics - instrumentation
Energy harvesting
Humans
Implants, Experimental
Measuring instruments
Medical devices
Photovoltaic cells
Seasons
Skin
Solar cells
Solar Energy
Solar power generation
Surgical implants
title Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Harvesting%20by%20Subcutaneous%20Solar%20Cells:%20A%20Long-Term%20Study%20on%20Achievable%20Energy%20Output&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Bereuter,%20L.&rft.date=2017-05-01&rft.volume=45&rft.issue=5&rft.spage=1172&rft.epage=1180&rft.pages=1172-1180&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-016-1774-4&rft_dat=%3Cproquest_pubme%3E1897376800%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889666505&rft_id=info:pmid/28050727&rfr_iscdi=true