A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism

Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2017-02, Vol.56 (7), p.1746-1750
Hauptverfasser: Derry, Matthew J., Mykhaylyk, Oleksandr O., Armes, Steven P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1750
container_issue 7
container_start_page 1746
container_title Angewandte Chemie International Edition
container_volume 56
creator Derry, Matthew J.
Mykhaylyk, Oleksandr O.
Armes, Steven P.
description Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane‐forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature‐dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non‐interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle‐to‐worm transitions offer an interesting new mechanism for the high‐temperature thickening of oils. A vesicle‐to‐worm transition occurs on heating poly(stearyl methacrylate)13‐poly(benzyl methacrylate)96 block copolymer vesicles in mineral oil to provide a new high‐temperature oil‐thickening mechanism.
doi_str_mv 10.1002/anie.201609365
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5396375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912441982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5335-370a0c7de44aa62f2dd257c1b14194a6b8f4258fc65b737eb3c57d8af9e3b7943</originalsourceid><addsrcrecordid>eNqFkbtuFDEUhi0EIhdoKZElGppdfLenQVpFgUQKCcUCBYXl8ZzZdZgZL_ZMonR5BJ6RJ8HRhuVSQGNb8ufP_9GP0DNK5pQQ9soNAeaMUEUqruQDtE8lozOuNX9YzoLzmTaS7qGDnC8LbwxRj9EeM0RTI8Q--rzAHyEH38H3229jLMunmHq8TG7IYQxxwO9TvAoNZOzwOVzjk7BaF2oJ_QaSG6cE-CJ0eLkO_gsMYVjhd-DXJVbun6BHresyPL3fD9GHN8fLo5PZ2cXb06PF2cxLzmUJSxzxugEhnFOsZU3DpPa0poJWwqnatIJJ03ola8011NxL3RjXVsBrXQl-iF5vvZup7qHxMIzJdXaTQu_SjY0u2D9vhrC2q3hlJa8U17IIXt4LUvw6QR5tH7KHrnMDxClbamT5WCpFCvriL_QyTmko41laUSZKZMP-SRnFikhzWqj5lvIp5pyg3UWmxN61a-_atbt2y4Pnvw-6w3_WWYBqC1yHDm7-o7OL89PjX_IfxUSz2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862660731</pqid></control><display><type>article</type><title>A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Derry, Matthew J. ; Mykhaylyk, Oleksandr O. ; Armes, Steven P.</creator><creatorcontrib>Derry, Matthew J. ; Mykhaylyk, Oleksandr O. ; Armes, Steven P.</creatorcontrib><description>Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane‐forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature‐dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non‐interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle‐to‐worm transitions offer an interesting new mechanism for the high‐temperature thickening of oils. A vesicle‐to‐worm transition occurs on heating poly(stearyl methacrylate)13‐poly(benzyl methacrylate)96 block copolymer vesicles in mineral oil to provide a new high‐temperature oil‐thickening mechanism.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201609365</identifier><identifier>PMID: 28071844</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Block copolymers ; Chains (polymeric) ; Communication ; Communications ; Concentration (composition) ; Dispersion ; Gelation ; Heating ; Mineral oils ; morphology transition ; nanoparticles ; Oil ; Packing ; Polymerization ; polymerization-induced self-assembly ; RAFT polymerization ; Rheological properties ; Spectroscopy ; Storage modulus ; Temperature effects ; Thickening ; Vesicles</subject><ispartof>Angewandte Chemie International Edition, 2017-02, Vol.56 (7), p.1746-1750</ispartof><rights>2017 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5335-370a0c7de44aa62f2dd257c1b14194a6b8f4258fc65b737eb3c57d8af9e3b7943</citedby><cites>FETCH-LOGICAL-c5335-370a0c7de44aa62f2dd257c1b14194a6b8f4258fc65b737eb3c57d8af9e3b7943</cites><orcidid>0000-0002-8289-6351 ; 0000-0001-5010-6725 ; 0000-0003-4110-8328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201609365$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201609365$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28071844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Derry, Matthew J.</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O.</creatorcontrib><creatorcontrib>Armes, Steven P.</creatorcontrib><title>A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane‐forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature‐dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non‐interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle‐to‐worm transitions offer an interesting new mechanism for the high‐temperature thickening of oils. A vesicle‐to‐worm transition occurs on heating poly(stearyl methacrylate)13‐poly(benzyl methacrylate)96 block copolymer vesicles in mineral oil to provide a new high‐temperature oil‐thickening mechanism.</description><subject>Block copolymers</subject><subject>Chains (polymeric)</subject><subject>Communication</subject><subject>Communications</subject><subject>Concentration (composition)</subject><subject>Dispersion</subject><subject>Gelation</subject><subject>Heating</subject><subject>Mineral oils</subject><subject>morphology transition</subject><subject>nanoparticles</subject><subject>Oil</subject><subject>Packing</subject><subject>Polymerization</subject><subject>polymerization-induced self-assembly</subject><subject>RAFT polymerization</subject><subject>Rheological properties</subject><subject>Spectroscopy</subject><subject>Storage modulus</subject><subject>Temperature effects</subject><subject>Thickening</subject><subject>Vesicles</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkbtuFDEUhi0EIhdoKZElGppdfLenQVpFgUQKCcUCBYXl8ZzZdZgZL_ZMonR5BJ6RJ8HRhuVSQGNb8ufP_9GP0DNK5pQQ9soNAeaMUEUqruQDtE8lozOuNX9YzoLzmTaS7qGDnC8LbwxRj9EeM0RTI8Q--rzAHyEH38H3229jLMunmHq8TG7IYQxxwO9TvAoNZOzwOVzjk7BaF2oJ_QaSG6cE-CJ0eLkO_gsMYVjhd-DXJVbun6BHresyPL3fD9GHN8fLo5PZ2cXb06PF2cxLzmUJSxzxugEhnFOsZU3DpPa0poJWwqnatIJJ03ola8011NxL3RjXVsBrXQl-iF5vvZup7qHxMIzJdXaTQu_SjY0u2D9vhrC2q3hlJa8U17IIXt4LUvw6QR5tH7KHrnMDxClbamT5WCpFCvriL_QyTmko41laUSZKZMP-SRnFikhzWqj5lvIp5pyg3UWmxN61a-_atbt2y4Pnvw-6w3_WWYBqC1yHDm7-o7OL89PjX_IfxUSz2A</recordid><startdate>20170206</startdate><enddate>20170206</enddate><creator>Derry, Matthew J.</creator><creator>Mykhaylyk, Oleksandr O.</creator><creator>Armes, Steven P.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid></search><sort><creationdate>20170206</creationdate><title>A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism</title><author>Derry, Matthew J. ; Mykhaylyk, Oleksandr O. ; Armes, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5335-370a0c7de44aa62f2dd257c1b14194a6b8f4258fc65b737eb3c57d8af9e3b7943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Block copolymers</topic><topic>Chains (polymeric)</topic><topic>Communication</topic><topic>Communications</topic><topic>Concentration (composition)</topic><topic>Dispersion</topic><topic>Gelation</topic><topic>Heating</topic><topic>Mineral oils</topic><topic>morphology transition</topic><topic>nanoparticles</topic><topic>Oil</topic><topic>Packing</topic><topic>Polymerization</topic><topic>polymerization-induced self-assembly</topic><topic>RAFT polymerization</topic><topic>Rheological properties</topic><topic>Spectroscopy</topic><topic>Storage modulus</topic><topic>Temperature effects</topic><topic>Thickening</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derry, Matthew J.</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O.</creatorcontrib><creatorcontrib>Armes, Steven P.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derry, Matthew J.</au><au>Mykhaylyk, Oleksandr O.</au><au>Armes, Steven P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-02-06</date><risdate>2017</risdate><volume>56</volume><issue>7</issue><spage>1746</spage><epage>1750</epage><pages>1746-1750</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane‐forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature‐dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non‐interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle‐to‐worm transitions offer an interesting new mechanism for the high‐temperature thickening of oils. A vesicle‐to‐worm transition occurs on heating poly(stearyl methacrylate)13‐poly(benzyl methacrylate)96 block copolymer vesicles in mineral oil to provide a new high‐temperature oil‐thickening mechanism.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28071844</pmid><doi>10.1002/anie.201609365</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2017-02, Vol.56 (7), p.1746-1750
issn 1433-7851
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5396375
source Wiley Online Library Journals Frontfile Complete
subjects Block copolymers
Chains (polymeric)
Communication
Communications
Concentration (composition)
Dispersion
Gelation
Heating
Mineral oils
morphology transition
nanoparticles
Oil
Packing
Polymerization
polymerization-induced self-assembly
RAFT polymerization
Rheological properties
Spectroscopy
Storage modulus
Temperature effects
Thickening
Vesicles
title A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Vesicle%E2%80%90to%E2%80%90Worm%20Transition%20Provides%20a%20New%20High%E2%80%90Temperature%20Oil%20Thickening%20Mechanism&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Derry,%20Matthew%20J.&rft.date=2017-02-06&rft.volume=56&rft.issue=7&rft.spage=1746&rft.epage=1750&rft.pages=1746-1750&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201609365&rft_dat=%3Cproquest_pubme%3E1912441982%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862660731&rft_id=info:pmid/28071844&rfr_iscdi=true