A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism
Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface pla...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2017-02, Vol.56 (7), p.1746-1750 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1750 |
---|---|
container_issue | 7 |
container_start_page | 1746 |
container_title | Angewandte Chemie International Edition |
container_volume | 56 |
creator | Derry, Matthew J. Mykhaylyk, Oleksandr O. Armes, Steven P. |
description | Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane‐forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature‐dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non‐interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle‐to‐worm transitions offer an interesting new mechanism for the high‐temperature thickening of oils.
A vesicle‐to‐worm transition occurs on heating poly(stearyl methacrylate)13‐poly(benzyl methacrylate)96 block copolymer vesicles in mineral oil to provide a new high‐temperature oil‐thickening mechanism. |
doi_str_mv | 10.1002/anie.201609365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5396375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1912441982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5335-370a0c7de44aa62f2dd257c1b14194a6b8f4258fc65b737eb3c57d8af9e3b7943</originalsourceid><addsrcrecordid>eNqFkbtuFDEUhi0EIhdoKZElGppdfLenQVpFgUQKCcUCBYXl8ZzZdZgZL_ZMonR5BJ6RJ8HRhuVSQGNb8ufP_9GP0DNK5pQQ9soNAeaMUEUqruQDtE8lozOuNX9YzoLzmTaS7qGDnC8LbwxRj9EeM0RTI8Q--rzAHyEH38H3229jLMunmHq8TG7IYQxxwO9TvAoNZOzwOVzjk7BaF2oJ_QaSG6cE-CJ0eLkO_gsMYVjhd-DXJVbun6BHresyPL3fD9GHN8fLo5PZ2cXb06PF2cxLzmUJSxzxugEhnFOsZU3DpPa0poJWwqnatIJJ03ola8011NxL3RjXVsBrXQl-iF5vvZup7qHxMIzJdXaTQu_SjY0u2D9vhrC2q3hlJa8U17IIXt4LUvw6QR5tH7KHrnMDxClbamT5WCpFCvriL_QyTmko41laUSZKZMP-SRnFikhzWqj5lvIp5pyg3UWmxN61a-_atbt2y4Pnvw-6w3_WWYBqC1yHDm7-o7OL89PjX_IfxUSz2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862660731</pqid></control><display><type>article</type><title>A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Derry, Matthew J. ; Mykhaylyk, Oleksandr O. ; Armes, Steven P.</creator><creatorcontrib>Derry, Matthew J. ; Mykhaylyk, Oleksandr O. ; Armes, Steven P.</creatorcontrib><description>Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane‐forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature‐dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non‐interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle‐to‐worm transitions offer an interesting new mechanism for the high‐temperature thickening of oils.
A vesicle‐to‐worm transition occurs on heating poly(stearyl methacrylate)13‐poly(benzyl methacrylate)96 block copolymer vesicles in mineral oil to provide a new high‐temperature oil‐thickening mechanism.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201609365</identifier><identifier>PMID: 28071844</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Block copolymers ; Chains (polymeric) ; Communication ; Communications ; Concentration (composition) ; Dispersion ; Gelation ; Heating ; Mineral oils ; morphology transition ; nanoparticles ; Oil ; Packing ; Polymerization ; polymerization-induced self-assembly ; RAFT polymerization ; Rheological properties ; Spectroscopy ; Storage modulus ; Temperature effects ; Thickening ; Vesicles</subject><ispartof>Angewandte Chemie International Edition, 2017-02, Vol.56 (7), p.1746-1750</ispartof><rights>2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5335-370a0c7de44aa62f2dd257c1b14194a6b8f4258fc65b737eb3c57d8af9e3b7943</citedby><cites>FETCH-LOGICAL-c5335-370a0c7de44aa62f2dd257c1b14194a6b8f4258fc65b737eb3c57d8af9e3b7943</cites><orcidid>0000-0002-8289-6351 ; 0000-0001-5010-6725 ; 0000-0003-4110-8328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201609365$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201609365$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28071844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Derry, Matthew J.</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O.</creatorcontrib><creatorcontrib>Armes, Steven P.</creatorcontrib><title>A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane‐forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature‐dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non‐interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle‐to‐worm transitions offer an interesting new mechanism for the high‐temperature thickening of oils.
A vesicle‐to‐worm transition occurs on heating poly(stearyl methacrylate)13‐poly(benzyl methacrylate)96 block copolymer vesicles in mineral oil to provide a new high‐temperature oil‐thickening mechanism.</description><subject>Block copolymers</subject><subject>Chains (polymeric)</subject><subject>Communication</subject><subject>Communications</subject><subject>Concentration (composition)</subject><subject>Dispersion</subject><subject>Gelation</subject><subject>Heating</subject><subject>Mineral oils</subject><subject>morphology transition</subject><subject>nanoparticles</subject><subject>Oil</subject><subject>Packing</subject><subject>Polymerization</subject><subject>polymerization-induced self-assembly</subject><subject>RAFT polymerization</subject><subject>Rheological properties</subject><subject>Spectroscopy</subject><subject>Storage modulus</subject><subject>Temperature effects</subject><subject>Thickening</subject><subject>Vesicles</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkbtuFDEUhi0EIhdoKZElGppdfLenQVpFgUQKCcUCBYXl8ZzZdZgZL_ZMonR5BJ6RJ8HRhuVSQGNb8ufP_9GP0DNK5pQQ9soNAeaMUEUqruQDtE8lozOuNX9YzoLzmTaS7qGDnC8LbwxRj9EeM0RTI8Q--rzAHyEH38H3229jLMunmHq8TG7IYQxxwO9TvAoNZOzwOVzjk7BaF2oJ_QaSG6cE-CJ0eLkO_gsMYVjhd-DXJVbun6BHresyPL3fD9GHN8fLo5PZ2cXb06PF2cxLzmUJSxzxugEhnFOsZU3DpPa0poJWwqnatIJJ03ola8011NxL3RjXVsBrXQl-iF5vvZup7qHxMIzJdXaTQu_SjY0u2D9vhrC2q3hlJa8U17IIXt4LUvw6QR5tH7KHrnMDxClbamT5WCpFCvriL_QyTmko41laUSZKZMP-SRnFikhzWqj5lvIp5pyg3UWmxN61a-_atbt2y4Pnvw-6w3_WWYBqC1yHDm7-o7OL89PjX_IfxUSz2A</recordid><startdate>20170206</startdate><enddate>20170206</enddate><creator>Derry, Matthew J.</creator><creator>Mykhaylyk, Oleksandr O.</creator><creator>Armes, Steven P.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid></search><sort><creationdate>20170206</creationdate><title>A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism</title><author>Derry, Matthew J. ; Mykhaylyk, Oleksandr O. ; Armes, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5335-370a0c7de44aa62f2dd257c1b14194a6b8f4258fc65b737eb3c57d8af9e3b7943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Block copolymers</topic><topic>Chains (polymeric)</topic><topic>Communication</topic><topic>Communications</topic><topic>Concentration (composition)</topic><topic>Dispersion</topic><topic>Gelation</topic><topic>Heating</topic><topic>Mineral oils</topic><topic>morphology transition</topic><topic>nanoparticles</topic><topic>Oil</topic><topic>Packing</topic><topic>Polymerization</topic><topic>polymerization-induced self-assembly</topic><topic>RAFT polymerization</topic><topic>Rheological properties</topic><topic>Spectroscopy</topic><topic>Storage modulus</topic><topic>Temperature effects</topic><topic>Thickening</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derry, Matthew J.</creatorcontrib><creatorcontrib>Mykhaylyk, Oleksandr O.</creatorcontrib><creatorcontrib>Armes, Steven P.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derry, Matthew J.</au><au>Mykhaylyk, Oleksandr O.</au><au>Armes, Steven P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-02-06</date><risdate>2017</risdate><volume>56</volume><issue>7</issue><spage>1746</spage><epage>1750</epage><pages>1746-1750</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Diblock copolymer vesicles are prepared via RAFT dispersion polymerization directly in mineral oil. Such vesicles undergo a vesicle‐to‐worm transition on heating to 150 °C, as judged by TEM and SAXS. Variable‐temperature 1H NMR spectroscopy indicates that this transition is the result of surface plasticization of the membrane‐forming block by hot solvent, effectively increasing the volume fraction of the stabilizer block and so reducing the packing parameter for the copolymer chains. The rheological behavior of a 10 % w/w copolymer dispersion in mineral oil is strongly temperature‐dependent: the storage modulus increases by five orders of magnitude on heating above the critical gelation temperature of 135 °C, as the non‐interacting vesicles are converted into weakly interacting worms. SAXS studies indicate that, on average, three worms are formed per vesicle. Such vesicle‐to‐worm transitions offer an interesting new mechanism for the high‐temperature thickening of oils.
A vesicle‐to‐worm transition occurs on heating poly(stearyl methacrylate)13‐poly(benzyl methacrylate)96 block copolymer vesicles in mineral oil to provide a new high‐temperature oil‐thickening mechanism.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28071844</pmid><doi>10.1002/anie.201609365</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8289-6351</orcidid><orcidid>https://orcid.org/0000-0001-5010-6725</orcidid><orcidid>https://orcid.org/0000-0003-4110-8328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2017-02, Vol.56 (7), p.1746-1750 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5396375 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Block copolymers Chains (polymeric) Communication Communications Concentration (composition) Dispersion Gelation Heating Mineral oils morphology transition nanoparticles Oil Packing Polymerization polymerization-induced self-assembly RAFT polymerization Rheological properties Spectroscopy Storage modulus Temperature effects Thickening Vesicles |
title | A Vesicle‐to‐Worm Transition Provides a New High‐Temperature Oil Thickening Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Vesicle%E2%80%90to%E2%80%90Worm%20Transition%20Provides%20a%20New%20High%E2%80%90Temperature%20Oil%20Thickening%20Mechanism&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Derry,%20Matthew%20J.&rft.date=2017-02-06&rft.volume=56&rft.issue=7&rft.spage=1746&rft.epage=1750&rft.pages=1746-1750&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201609365&rft_dat=%3Cproquest_pubme%3E1912441982%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862660731&rft_id=info:pmid/28071844&rfr_iscdi=true |