mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis

Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2017-01, Vol.144 (2), p.201-210
Hauptverfasser: Foerster, Philippe, Daclin, Marie, Asm, Shihavuddin, Faucourt, Marion, Boletta, Alessandra, Genovesio, Auguste, Spassky, Nathalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 2
container_start_page 201
container_title Development (Cambridge)
container_volume 144
creator Foerster, Philippe
Daclin, Marie
Asm, Shihavuddin
Faucourt, Marion
Boletta, Alessandra
Genovesio, Auguste
Spassky, Nathalie
description Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.
doi_str_mv 10.1242/dev.138271
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851295921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-bdf03dfc8da2024cc5d7fc8e6b76056c63dfa371f78bec25e49a62a74d67f79a3</originalsourceid><addsrcrecordid>eNqNks9LHDEcxUNR6lZ78Q-QgJdaGM3vTC4FWWwVFkTRc8gkmd3IzGRNdhb63zfDrtJ66ikk309eHnkPgFOMLjFh5Mr57SWmNZH4E5hhJmWlMFEHYIYURxVWCh-BLzm_IISokPIzOCJSKaqkmoGH_un-cY5hDsvBdGFYQjM4uE6hN-k3tKELBprkYfKvY0jewTYm2CQTBrj1wyYF23nYx7RexaUffA75BBy2psv-6349Bs8_b57mt9Xi_tfd_HpRWcHRpmpci6hrbe0MQYRZy50sOy8aKRAXVpShoRK3sm68JdwzZQQxkjkhW6kMPQY_drrrsem9s5Mb0-m9dR1N0P9OhrDSy7jVnComOSsCFzuB1Ydrt9cLPZ0VW4TTWm5xYb_tH0vxdfR5o_uQre86M_g4Zo1rUVOGJaP_gfKSDldkUj3_gL7EMZUcCqUmPcHVRH3fUTbFnJNv381ipKcC6FIAvStAgc_-_pV39C1x-gfiT6vG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983416591</pqid></control><display><type>article</type><title>mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Foerster, Philippe ; Daclin, Marie ; Asm, Shihavuddin ; Faucourt, Marion ; Boletta, Alessandra ; Genovesio, Auguste ; Spassky, Nathalie</creator><creatorcontrib>Foerster, Philippe ; Daclin, Marie ; Asm, Shihavuddin ; Faucourt, Marion ; Boletta, Alessandra ; Genovesio, Auguste ; Spassky, Nathalie</creatorcontrib><description>Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.138271</identifier><identifier>PMID: 27993979</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Animals ; Brain - drug effects ; Brain - embryology ; Cell Polarity - drug effects ; Cerebral Ventricles - drug effects ; Cerebral Ventricles - embryology ; Cerebral Ventricles - metabolism ; Cilia ; Cilia - drug effects ; Cilia - physiology ; Computer Science ; Conditional mutant ; Embryo, Mammalian ; Embryogenesis ; Female ; Glial cells ; Hydrocephalus ; Mechanistic Target of Rapamycin Complex 1 ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Morphogenesis ; Morphogenesis - drug effects ; Morphogenesis - genetics ; Multiprotein Complexes - antagonists &amp; inhibitors ; Multiprotein Complexes - metabolism ; Multiprotein Complexes - physiology ; Neurogenesis ; Neurogenesis - drug effects ; Neurogenesis - physiology ; Neuronal-glial interactions ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Pattern formation ; Pregnancy ; Progenitor cells ; Radial glial cells ; Rapamycin ; Rodents ; Signal and Image Processing ; Signal transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Sirolimus - pharmacology ; Stem cells ; Stem Cells and Regeneration ; TOR protein ; TOR Serine-Threonine Kinases - antagonists &amp; inhibitors ; TOR Serine-Threonine Kinases - metabolism ; TOR Serine-Threonine Kinases - physiology ; Ventricle ; Ventricles (cerebral)</subject><ispartof>Development (Cambridge), 2017-01, Vol.144 (2), p.201-210</ispartof><rights>2017. Published by The Company of Biologists Ltd.</rights><rights>Copyright The Company of Biologists Ltd Jan 15, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017. Published by The Company of Biologists Ltd 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-bdf03dfc8da2024cc5d7fc8e6b76056c63dfa371f78bec25e49a62a74d67f79a3</citedby><cites>FETCH-LOGICAL-c650t-bdf03dfc8da2024cc5d7fc8e6b76056c63dfa371f78bec25e49a62a74d67f79a3</cites><orcidid>0000-0003-4722-6464 ; 0000-0003-1877-5595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3676,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27993979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ens.hal.science/hal-02425387$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Foerster, Philippe</creatorcontrib><creatorcontrib>Daclin, Marie</creatorcontrib><creatorcontrib>Asm, Shihavuddin</creatorcontrib><creatorcontrib>Faucourt, Marion</creatorcontrib><creatorcontrib>Boletta, Alessandra</creatorcontrib><creatorcontrib>Genovesio, Auguste</creatorcontrib><creatorcontrib>Spassky, Nathalie</creatorcontrib><title>mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.</description><subject>Animals</subject><subject>Brain - drug effects</subject><subject>Brain - embryology</subject><subject>Cell Polarity - drug effects</subject><subject>Cerebral Ventricles - drug effects</subject><subject>Cerebral Ventricles - embryology</subject><subject>Cerebral Ventricles - metabolism</subject><subject>Cilia</subject><subject>Cilia - drug effects</subject><subject>Cilia - physiology</subject><subject>Computer Science</subject><subject>Conditional mutant</subject><subject>Embryo, Mammalian</subject><subject>Embryogenesis</subject><subject>Female</subject><subject>Glial cells</subject><subject>Hydrocephalus</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Morphogenesis</subject><subject>Morphogenesis - drug effects</subject><subject>Morphogenesis - genetics</subject><subject>Multiprotein Complexes - antagonists &amp; inhibitors</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Multiprotein Complexes - physiology</subject><subject>Neurogenesis</subject><subject>Neurogenesis - drug effects</subject><subject>Neurogenesis - physiology</subject><subject>Neuronal-glial interactions</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Pattern formation</subject><subject>Pregnancy</subject><subject>Progenitor cells</subject><subject>Radial glial cells</subject><subject>Rapamycin</subject><subject>Rodents</subject><subject>Signal and Image Processing</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Sirolimus - pharmacology</subject><subject>Stem cells</subject><subject>Stem Cells and Regeneration</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>TOR Serine-Threonine Kinases - physiology</subject><subject>Ventricle</subject><subject>Ventricles (cerebral)</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9LHDEcxUNR6lZ78Q-QgJdaGM3vTC4FWWwVFkTRc8gkmd3IzGRNdhb63zfDrtJ66ikk309eHnkPgFOMLjFh5Mr57SWmNZH4E5hhJmWlMFEHYIYURxVWCh-BLzm_IISokPIzOCJSKaqkmoGH_un-cY5hDsvBdGFYQjM4uE6hN-k3tKELBprkYfKvY0jewTYm2CQTBrj1wyYF23nYx7RexaUffA75BBy2psv-6349Bs8_b57mt9Xi_tfd_HpRWcHRpmpci6hrbe0MQYRZy50sOy8aKRAXVpShoRK3sm68JdwzZQQxkjkhW6kMPQY_drrrsem9s5Mb0-m9dR1N0P9OhrDSy7jVnComOSsCFzuB1Ydrt9cLPZ0VW4TTWm5xYb_tH0vxdfR5o_uQre86M_g4Zo1rUVOGJaP_gfKSDldkUj3_gL7EMZUcCqUmPcHVRH3fUTbFnJNv381ipKcC6FIAvStAgc_-_pV39C1x-gfiT6vG</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Foerster, Philippe</creator><creator>Daclin, Marie</creator><creator>Asm, Shihavuddin</creator><creator>Faucourt, Marion</creator><creator>Boletta, Alessandra</creator><creator>Genovesio, Auguste</creator><creator>Spassky, Nathalie</creator><general>The Company of Biologists Ltd</general><general>Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4722-6464</orcidid><orcidid>https://orcid.org/0000-0003-1877-5595</orcidid></search><sort><creationdate>20170115</creationdate><title>mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis</title><author>Foerster, Philippe ; Daclin, Marie ; Asm, Shihavuddin ; Faucourt, Marion ; Boletta, Alessandra ; Genovesio, Auguste ; Spassky, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-bdf03dfc8da2024cc5d7fc8e6b76056c63dfa371f78bec25e49a62a74d67f79a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Brain - drug effects</topic><topic>Brain - embryology</topic><topic>Cell Polarity - drug effects</topic><topic>Cerebral Ventricles - drug effects</topic><topic>Cerebral Ventricles - embryology</topic><topic>Cerebral Ventricles - metabolism</topic><topic>Cilia</topic><topic>Cilia - drug effects</topic><topic>Cilia - physiology</topic><topic>Computer Science</topic><topic>Conditional mutant</topic><topic>Embryo, Mammalian</topic><topic>Embryogenesis</topic><topic>Female</topic><topic>Glial cells</topic><topic>Hydrocephalus</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Morphogenesis</topic><topic>Morphogenesis - drug effects</topic><topic>Morphogenesis - genetics</topic><topic>Multiprotein Complexes - antagonists &amp; inhibitors</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Multiprotein Complexes - physiology</topic><topic>Neurogenesis</topic><topic>Neurogenesis - drug effects</topic><topic>Neurogenesis - physiology</topic><topic>Neuronal-glial interactions</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Pattern formation</topic><topic>Pregnancy</topic><topic>Progenitor cells</topic><topic>Radial glial cells</topic><topic>Rapamycin</topic><topic>Rodents</topic><topic>Signal and Image Processing</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Sirolimus - pharmacology</topic><topic>Stem cells</topic><topic>Stem Cells and Regeneration</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - antagonists &amp; inhibitors</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>TOR Serine-Threonine Kinases - physiology</topic><topic>Ventricle</topic><topic>Ventricles (cerebral)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foerster, Philippe</creatorcontrib><creatorcontrib>Daclin, Marie</creatorcontrib><creatorcontrib>Asm, Shihavuddin</creatorcontrib><creatorcontrib>Faucourt, Marion</creatorcontrib><creatorcontrib>Boletta, Alessandra</creatorcontrib><creatorcontrib>Genovesio, Auguste</creatorcontrib><creatorcontrib>Spassky, Nathalie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foerster, Philippe</au><au>Daclin, Marie</au><au>Asm, Shihavuddin</au><au>Faucourt, Marion</au><au>Boletta, Alessandra</au><au>Genovesio, Auguste</au><au>Spassky, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2017-01-15</date><risdate>2017</risdate><volume>144</volume><issue>2</issue><spage>201</spage><epage>210</epage><pages>201-210</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>27993979</pmid><doi>10.1242/dev.138271</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4722-6464</orcidid><orcidid>https://orcid.org/0000-0003-1877-5595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-1991
ispartof Development (Cambridge), 2017-01, Vol.144 (2), p.201-210
issn 0950-1991
1477-9129
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394754
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Animals
Brain - drug effects
Brain - embryology
Cell Polarity - drug effects
Cerebral Ventricles - drug effects
Cerebral Ventricles - embryology
Cerebral Ventricles - metabolism
Cilia
Cilia - drug effects
Cilia - physiology
Computer Science
Conditional mutant
Embryo, Mammalian
Embryogenesis
Female
Glial cells
Hydrocephalus
Mechanistic Target of Rapamycin Complex 1
Mice
Mice, Inbred C57BL
Mice, Transgenic
Morphogenesis
Morphogenesis - drug effects
Morphogenesis - genetics
Multiprotein Complexes - antagonists & inhibitors
Multiprotein Complexes - metabolism
Multiprotein Complexes - physiology
Neurogenesis
Neurogenesis - drug effects
Neurogenesis - physiology
Neuronal-glial interactions
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Pattern formation
Pregnancy
Progenitor cells
Radial glial cells
Rapamycin
Rodents
Signal and Image Processing
Signal transduction
Signal Transduction - drug effects
Signal Transduction - physiology
Sirolimus - pharmacology
Stem cells
Stem Cells and Regeneration
TOR protein
TOR Serine-Threonine Kinases - antagonists & inhibitors
TOR Serine-Threonine Kinases - metabolism
TOR Serine-Threonine Kinases - physiology
Ventricle
Ventricles (cerebral)
title mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC1%20signaling%20and%20primary%20cilia%20are%20required%20for%20brain%20ventricle%20morphogenesis&rft.jtitle=Development%20(Cambridge)&rft.au=Foerster,%20Philippe&rft.date=2017-01-15&rft.volume=144&rft.issue=2&rft.spage=201&rft.epage=210&rft.pages=201-210&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.138271&rft_dat=%3Cproquest_pubme%3E1851295921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983416591&rft_id=info:pmid/27993979&rfr_iscdi=true