mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis
Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studi...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2017-01, Vol.144 (2), p.201-210 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 2 |
container_start_page | 201 |
container_title | Development (Cambridge) |
container_volume | 144 |
creator | Foerster, Philippe Daclin, Marie Asm, Shihavuddin Faucourt, Marion Boletta, Alessandra Genovesio, Auguste Spassky, Nathalie |
description | Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus. |
doi_str_mv | 10.1242/dev.138271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851295921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-bdf03dfc8da2024cc5d7fc8e6b76056c63dfa371f78bec25e49a62a74d67f79a3</originalsourceid><addsrcrecordid>eNqNks9LHDEcxUNR6lZ78Q-QgJdaGM3vTC4FWWwVFkTRc8gkmd3IzGRNdhb63zfDrtJ66ikk309eHnkPgFOMLjFh5Mr57SWmNZH4E5hhJmWlMFEHYIYURxVWCh-BLzm_IISokPIzOCJSKaqkmoGH_un-cY5hDsvBdGFYQjM4uE6hN-k3tKELBprkYfKvY0jewTYm2CQTBrj1wyYF23nYx7RexaUffA75BBy2psv-6349Bs8_b57mt9Xi_tfd_HpRWcHRpmpci6hrbe0MQYRZy50sOy8aKRAXVpShoRK3sm68JdwzZQQxkjkhW6kMPQY_drrrsem9s5Mb0-m9dR1N0P9OhrDSy7jVnComOSsCFzuB1Ydrt9cLPZ0VW4TTWm5xYb_tH0vxdfR5o_uQre86M_g4Zo1rUVOGJaP_gfKSDldkUj3_gL7EMZUcCqUmPcHVRH3fUTbFnJNv381ipKcC6FIAvStAgc_-_pV39C1x-gfiT6vG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983416591</pqid></control><display><type>article</type><title>mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Foerster, Philippe ; Daclin, Marie ; Asm, Shihavuddin ; Faucourt, Marion ; Boletta, Alessandra ; Genovesio, Auguste ; Spassky, Nathalie</creator><creatorcontrib>Foerster, Philippe ; Daclin, Marie ; Asm, Shihavuddin ; Faucourt, Marion ; Boletta, Alessandra ; Genovesio, Auguste ; Spassky, Nathalie</creatorcontrib><description>Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.</description><identifier>ISSN: 0950-1991</identifier><identifier>EISSN: 1477-9129</identifier><identifier>DOI: 10.1242/dev.138271</identifier><identifier>PMID: 27993979</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Animals ; Brain - drug effects ; Brain - embryology ; Cell Polarity - drug effects ; Cerebral Ventricles - drug effects ; Cerebral Ventricles - embryology ; Cerebral Ventricles - metabolism ; Cilia ; Cilia - drug effects ; Cilia - physiology ; Computer Science ; Conditional mutant ; Embryo, Mammalian ; Embryogenesis ; Female ; Glial cells ; Hydrocephalus ; Mechanistic Target of Rapamycin Complex 1 ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Morphogenesis ; Morphogenesis - drug effects ; Morphogenesis - genetics ; Multiprotein Complexes - antagonists & inhibitors ; Multiprotein Complexes - metabolism ; Multiprotein Complexes - physiology ; Neurogenesis ; Neurogenesis - drug effects ; Neurogenesis - physiology ; Neuronal-glial interactions ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Pattern formation ; Pregnancy ; Progenitor cells ; Radial glial cells ; Rapamycin ; Rodents ; Signal and Image Processing ; Signal transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Sirolimus - pharmacology ; Stem cells ; Stem Cells and Regeneration ; TOR protein ; TOR Serine-Threonine Kinases - antagonists & inhibitors ; TOR Serine-Threonine Kinases - metabolism ; TOR Serine-Threonine Kinases - physiology ; Ventricle ; Ventricles (cerebral)</subject><ispartof>Development (Cambridge), 2017-01, Vol.144 (2), p.201-210</ispartof><rights>2017. Published by The Company of Biologists Ltd.</rights><rights>Copyright The Company of Biologists Ltd Jan 15, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2017. Published by The Company of Biologists Ltd 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-bdf03dfc8da2024cc5d7fc8e6b76056c63dfa371f78bec25e49a62a74d67f79a3</citedby><cites>FETCH-LOGICAL-c650t-bdf03dfc8da2024cc5d7fc8e6b76056c63dfa371f78bec25e49a62a74d67f79a3</cites><orcidid>0000-0003-4722-6464 ; 0000-0003-1877-5595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3676,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27993979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ens.hal.science/hal-02425387$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Foerster, Philippe</creatorcontrib><creatorcontrib>Daclin, Marie</creatorcontrib><creatorcontrib>Asm, Shihavuddin</creatorcontrib><creatorcontrib>Faucourt, Marion</creatorcontrib><creatorcontrib>Boletta, Alessandra</creatorcontrib><creatorcontrib>Genovesio, Auguste</creatorcontrib><creatorcontrib>Spassky, Nathalie</creatorcontrib><title>mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis</title><title>Development (Cambridge)</title><addtitle>Development</addtitle><description>Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.</description><subject>Animals</subject><subject>Brain - drug effects</subject><subject>Brain - embryology</subject><subject>Cell Polarity - drug effects</subject><subject>Cerebral Ventricles - drug effects</subject><subject>Cerebral Ventricles - embryology</subject><subject>Cerebral Ventricles - metabolism</subject><subject>Cilia</subject><subject>Cilia - drug effects</subject><subject>Cilia - physiology</subject><subject>Computer Science</subject><subject>Conditional mutant</subject><subject>Embryo, Mammalian</subject><subject>Embryogenesis</subject><subject>Female</subject><subject>Glial cells</subject><subject>Hydrocephalus</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Morphogenesis</subject><subject>Morphogenesis - drug effects</subject><subject>Morphogenesis - genetics</subject><subject>Multiprotein Complexes - antagonists & inhibitors</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Multiprotein Complexes - physiology</subject><subject>Neurogenesis</subject><subject>Neurogenesis - drug effects</subject><subject>Neurogenesis - physiology</subject><subject>Neuronal-glial interactions</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Pattern formation</subject><subject>Pregnancy</subject><subject>Progenitor cells</subject><subject>Radial glial cells</subject><subject>Rapamycin</subject><subject>Rodents</subject><subject>Signal and Image Processing</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Sirolimus - pharmacology</subject><subject>Stem cells</subject><subject>Stem Cells and Regeneration</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - antagonists & inhibitors</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>TOR Serine-Threonine Kinases - physiology</subject><subject>Ventricle</subject><subject>Ventricles (cerebral)</subject><issn>0950-1991</issn><issn>1477-9129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks9LHDEcxUNR6lZ78Q-QgJdaGM3vTC4FWWwVFkTRc8gkmd3IzGRNdhb63zfDrtJ66ikk309eHnkPgFOMLjFh5Mr57SWmNZH4E5hhJmWlMFEHYIYURxVWCh-BLzm_IISokPIzOCJSKaqkmoGH_un-cY5hDsvBdGFYQjM4uE6hN-k3tKELBprkYfKvY0jewTYm2CQTBrj1wyYF23nYx7RexaUffA75BBy2psv-6349Bs8_b57mt9Xi_tfd_HpRWcHRpmpci6hrbe0MQYRZy50sOy8aKRAXVpShoRK3sm68JdwzZQQxkjkhW6kMPQY_drrrsem9s5Mb0-m9dR1N0P9OhrDSy7jVnComOSsCFzuB1Ydrt9cLPZ0VW4TTWm5xYb_tH0vxdfR5o_uQre86M_g4Zo1rUVOGJaP_gfKSDldkUj3_gL7EMZUcCqUmPcHVRH3fUTbFnJNv381ipKcC6FIAvStAgc_-_pV39C1x-gfiT6vG</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Foerster, Philippe</creator><creator>Daclin, Marie</creator><creator>Asm, Shihavuddin</creator><creator>Faucourt, Marion</creator><creator>Boletta, Alessandra</creator><creator>Genovesio, Auguste</creator><creator>Spassky, Nathalie</creator><general>The Company of Biologists Ltd</general><general>Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4722-6464</orcidid><orcidid>https://orcid.org/0000-0003-1877-5595</orcidid></search><sort><creationdate>20170115</creationdate><title>mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis</title><author>Foerster, Philippe ; Daclin, Marie ; Asm, Shihavuddin ; Faucourt, Marion ; Boletta, Alessandra ; Genovesio, Auguste ; Spassky, Nathalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-bdf03dfc8da2024cc5d7fc8e6b76056c63dfa371f78bec25e49a62a74d67f79a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Brain - drug effects</topic><topic>Brain - embryology</topic><topic>Cell Polarity - drug effects</topic><topic>Cerebral Ventricles - drug effects</topic><topic>Cerebral Ventricles - embryology</topic><topic>Cerebral Ventricles - metabolism</topic><topic>Cilia</topic><topic>Cilia - drug effects</topic><topic>Cilia - physiology</topic><topic>Computer Science</topic><topic>Conditional mutant</topic><topic>Embryo, Mammalian</topic><topic>Embryogenesis</topic><topic>Female</topic><topic>Glial cells</topic><topic>Hydrocephalus</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Morphogenesis</topic><topic>Morphogenesis - drug effects</topic><topic>Morphogenesis - genetics</topic><topic>Multiprotein Complexes - antagonists & inhibitors</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Multiprotein Complexes - physiology</topic><topic>Neurogenesis</topic><topic>Neurogenesis - drug effects</topic><topic>Neurogenesis - physiology</topic><topic>Neuronal-glial interactions</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Pattern formation</topic><topic>Pregnancy</topic><topic>Progenitor cells</topic><topic>Radial glial cells</topic><topic>Rapamycin</topic><topic>Rodents</topic><topic>Signal and Image Processing</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Sirolimus - pharmacology</topic><topic>Stem cells</topic><topic>Stem Cells and Regeneration</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - antagonists & inhibitors</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>TOR Serine-Threonine Kinases - physiology</topic><topic>Ventricle</topic><topic>Ventricles (cerebral)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foerster, Philippe</creatorcontrib><creatorcontrib>Daclin, Marie</creatorcontrib><creatorcontrib>Asm, Shihavuddin</creatorcontrib><creatorcontrib>Faucourt, Marion</creatorcontrib><creatorcontrib>Boletta, Alessandra</creatorcontrib><creatorcontrib>Genovesio, Auguste</creatorcontrib><creatorcontrib>Spassky, Nathalie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Development (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foerster, Philippe</au><au>Daclin, Marie</au><au>Asm, Shihavuddin</au><au>Faucourt, Marion</au><au>Boletta, Alessandra</au><au>Genovesio, Auguste</au><au>Spassky, Nathalie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis</atitle><jtitle>Development (Cambridge)</jtitle><addtitle>Development</addtitle><date>2017-01-15</date><risdate>2017</risdate><volume>144</volume><issue>2</issue><spage>201</spage><epage>210</epage><pages>201-210</pages><issn>0950-1991</issn><eissn>1477-9129</eissn><abstract>Radial glial cells (RCGs) are self-renewing progenitor cells that give rise to neurons and glia during embryonic development. Throughout neurogenesis, these cells contact the cerebral ventricles and bear a primary cilium. Although the role of the primary cilium in embryonic patterning has been studied, its role in brain ventricular morphogenesis is poorly characterized. Using conditional mutants, we show that the primary cilia of radial glia determine the size of the surface of their ventricular apical domain through regulation of the mTORC1 pathway. In cilium-less mutants, the orientation of the mitotic spindle in radial glia is also significantly perturbed and associated with an increased number of basal progenitors. The enlarged apical domain of RGCs leads to dilatation of the brain ventricles during late embryonic stages (ventriculomegaly), which initiates hydrocephalus during postnatal stages. These phenotypes can all be significantly rescued by treatment with the mTORC1 inhibitor rapamycin. These results suggest that primary cilia regulate ventricle morphogenesis by acting as a brake on the mTORC1 pathway. This opens new avenues for the diagnosis and treatment of hydrocephalus.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>27993979</pmid><doi>10.1242/dev.138271</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4722-6464</orcidid><orcidid>https://orcid.org/0000-0003-1877-5595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-1991 |
ispartof | Development (Cambridge), 2017-01, Vol.144 (2), p.201-210 |
issn | 0950-1991 1477-9129 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394754 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Animals Brain - drug effects Brain - embryology Cell Polarity - drug effects Cerebral Ventricles - drug effects Cerebral Ventricles - embryology Cerebral Ventricles - metabolism Cilia Cilia - drug effects Cilia - physiology Computer Science Conditional mutant Embryo, Mammalian Embryogenesis Female Glial cells Hydrocephalus Mechanistic Target of Rapamycin Complex 1 Mice Mice, Inbred C57BL Mice, Transgenic Morphogenesis Morphogenesis - drug effects Morphogenesis - genetics Multiprotein Complexes - antagonists & inhibitors Multiprotein Complexes - metabolism Multiprotein Complexes - physiology Neurogenesis Neurogenesis - drug effects Neurogenesis - physiology Neuronal-glial interactions Neurons - cytology Neurons - drug effects Neurons - physiology Pattern formation Pregnancy Progenitor cells Radial glial cells Rapamycin Rodents Signal and Image Processing Signal transduction Signal Transduction - drug effects Signal Transduction - physiology Sirolimus - pharmacology Stem cells Stem Cells and Regeneration TOR protein TOR Serine-Threonine Kinases - antagonists & inhibitors TOR Serine-Threonine Kinases - metabolism TOR Serine-Threonine Kinases - physiology Ventricle Ventricles (cerebral) |
title | mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTORC1%20signaling%20and%20primary%20cilia%20are%20required%20for%20brain%20ventricle%20morphogenesis&rft.jtitle=Development%20(Cambridge)&rft.au=Foerster,%20Philippe&rft.date=2017-01-15&rft.volume=144&rft.issue=2&rft.spage=201&rft.epage=210&rft.pages=201-210&rft.issn=0950-1991&rft.eissn=1477-9129&rft_id=info:doi/10.1242/dev.138271&rft_dat=%3Cproquest_pubme%3E1851295921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983416591&rft_id=info:pmid/27993979&rfr_iscdi=true |