Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models
Purpose Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is import...
Gespeichert in:
Veröffentlicht in: | Cancer Immunology, Immunotherapy Immunotherapy, 2016-12, Vol.65 (12), p.1511-1522 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1522 |
---|---|
container_issue | 12 |
container_start_page | 1511 |
container_title | Cancer Immunology, Immunotherapy |
container_volume | 65 |
creator | Lanzel, Emily A. Paula Gomez Hernandez, M. Bates, Amber M. Treinen, Christopher N. Starman, Emily E. Fischer, Carol L. Parashar, Deepak Guthmiller, Janet M. Johnson, Georgia K. Abbasi, Taher Vali, Shireen Brogden, Kim A. |
description | Purpose
Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is important as both a diagnostic aid and a clinical predictor of immunotherapy treatment success. Because IHC reactivity can vary, we developed computational simulation models to accurately predict PD-L1 expression as a complementary assay to affirm IHC reactivity.
Methods
Multiple myeloma (MM) and oral squamous cell carcinoma (SCC) cell lines were modeled as examples of our approach. Non-transformed cell models were first simulated to establish non-tumorigenic control baselines. Cell line genomic aberration profiles, from next-generation sequencing (NGS) information for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines, were introduced into the workflow to create cancer cell line-specific simulation models. Percentage changes of PD-L1 expression with respect to control baselines were determined and verified against observed PD-L1 expression by ELISA, IHC, and flow cytometry on the same cells grown in culture.
Result
The observed PD-L1 expression matched the predicted PD-L1 expression for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines and clearly demonstrated that cell genomics play an integral role by influencing cell signaling and downstream effects on PD-L1 expression.
Conclusion
This concept can easily be extended to cancer patient cells where an accurate method to predict PD-L1 expression would affirm IHC results and improve its potential as a biomarker and a clinical predictor of treatment success. |
doi_str_mv | 10.1007/s00262-016-1907-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837306178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-dfe1d5a0d22939e00603119800c64c6ee47a503cff55efa18e7d974490adb7f03</originalsourceid><addsrcrecordid>eNqNkk1rFTEUhoMo9lr9AW5kwE03Y08-JplsBKmfcMEudB3SzJnblJnkmsyUuuw_N9OppS0IQiDJeZ_zJic5hLym8I4CqOMMwCSrgcqaalB184RsqOAl0jb0KdkAF1ArAHFAXuR8URYMtH5ODpiSbUsl35Dr04Sdd5MPu-r0Y72lFV7tE-bsY6jKOJ9HGypng8NUORyGXM15gQNeTfUOAyY7LWzGXzMGt0g-9DGNa9iX5Dju5-lma4cq-3EeVm2MHQ75JXnW2yHjq9v5kPz8_OnHydd6-_3Lt5MP29o1wKe665F2jYWOMc01AkjglOoWwEnhJKJQtoCu75sGe0tbVJ1WQmiw3ZnqgR-S96vvfj4bsXMYpmQHs09-tOm3idabh0rw52YXL03DtWikKgZHtwYpllrzZEaflyexAeOcDW2FFJTL_0K54iCpagv69hF6EedUXmqlgDImmkLRlXIp5pywv7s3BbP0gll7wZReMEsvmCXnzf2C7zL-fn4B2ArkIoUdpntH_9P1D9ZswcI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837012245</pqid></control><display><type>article</type><title>Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lanzel, Emily A. ; Paula Gomez Hernandez, M. ; Bates, Amber M. ; Treinen, Christopher N. ; Starman, Emily E. ; Fischer, Carol L. ; Parashar, Deepak ; Guthmiller, Janet M. ; Johnson, Georgia K. ; Abbasi, Taher ; Vali, Shireen ; Brogden, Kim A.</creator><creatorcontrib>Lanzel, Emily A. ; Paula Gomez Hernandez, M. ; Bates, Amber M. ; Treinen, Christopher N. ; Starman, Emily E. ; Fischer, Carol L. ; Parashar, Deepak ; Guthmiller, Janet M. ; Johnson, Georgia K. ; Abbasi, Taher ; Vali, Shireen ; Brogden, Kim A.</creatorcontrib><description>Purpose
Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is important as both a diagnostic aid and a clinical predictor of immunotherapy treatment success. Because IHC reactivity can vary, we developed computational simulation models to accurately predict PD-L1 expression as a complementary assay to affirm IHC reactivity.
Methods
Multiple myeloma (MM) and oral squamous cell carcinoma (SCC) cell lines were modeled as examples of our approach. Non-transformed cell models were first simulated to establish non-tumorigenic control baselines. Cell line genomic aberration profiles, from next-generation sequencing (NGS) information for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines, were introduced into the workflow to create cancer cell line-specific simulation models. Percentage changes of PD-L1 expression with respect to control baselines were determined and verified against observed PD-L1 expression by ELISA, IHC, and flow cytometry on the same cells grown in culture.
Result
The observed PD-L1 expression matched the predicted PD-L1 expression for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines and clearly demonstrated that cell genomics play an integral role by influencing cell signaling and downstream effects on PD-L1 expression.
Conclusion
This concept can easily be extended to cancer patient cells where an accurate method to predict PD-L1 expression would affirm IHC results and improve its potential as a biomarker and a clinical predictor of treatment success.</description><identifier>ISSN: 0340-7004</identifier><identifier>EISSN: 1432-0851</identifier><identifier>DOI: 10.1007/s00262-016-1907-5</identifier><identifier>PMID: 27688163</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; B7-H1 Antigen - metabolism ; Biomarkers ; Cancer ; Cancer Research ; Carcinoma, Squamous Cell - genetics ; Carcinoma, Squamous Cell - pathology ; Cells ; Computer Simulation ; Dentistry ; Genomics ; Humans ; Immunology ; Immunotherapy ; Interferon ; Kinases ; Ligands ; Lymphocytes ; Medical prognosis ; Medicine ; Medicine & Public Health ; Middle Aged ; Models, Biological ; Molecular Dynamics Simulation ; Mouth Neoplasms - genetics ; Mouth Neoplasms - pathology ; Multiple myeloma ; Multiple Myeloma - genetics ; Multiple Myeloma - pathology ; Oncology ; Original Article ; Pathogenesis ; Patients ; Proteins ; Simulation ; Tumors</subject><ispartof>Cancer Immunology, Immunotherapy, 2016-12, Vol.65 (12), p.1511-1522</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-dfe1d5a0d22939e00603119800c64c6ee47a503cff55efa18e7d974490adb7f03</citedby><cites>FETCH-LOGICAL-c503t-dfe1d5a0d22939e00603119800c64c6ee47a503cff55efa18e7d974490adb7f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394567/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394567/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27688163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lanzel, Emily A.</creatorcontrib><creatorcontrib>Paula Gomez Hernandez, M.</creatorcontrib><creatorcontrib>Bates, Amber M.</creatorcontrib><creatorcontrib>Treinen, Christopher N.</creatorcontrib><creatorcontrib>Starman, Emily E.</creatorcontrib><creatorcontrib>Fischer, Carol L.</creatorcontrib><creatorcontrib>Parashar, Deepak</creatorcontrib><creatorcontrib>Guthmiller, Janet M.</creatorcontrib><creatorcontrib>Johnson, Georgia K.</creatorcontrib><creatorcontrib>Abbasi, Taher</creatorcontrib><creatorcontrib>Vali, Shireen</creatorcontrib><creatorcontrib>Brogden, Kim A.</creatorcontrib><title>Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models</title><title>Cancer Immunology, Immunotherapy</title><addtitle>Cancer Immunol Immunother</addtitle><addtitle>Cancer Immunol Immunother</addtitle><description>Purpose
Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is important as both a diagnostic aid and a clinical predictor of immunotherapy treatment success. Because IHC reactivity can vary, we developed computational simulation models to accurately predict PD-L1 expression as a complementary assay to affirm IHC reactivity.
Methods
Multiple myeloma (MM) and oral squamous cell carcinoma (SCC) cell lines were modeled as examples of our approach. Non-transformed cell models were first simulated to establish non-tumorigenic control baselines. Cell line genomic aberration profiles, from next-generation sequencing (NGS) information for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines, were introduced into the workflow to create cancer cell line-specific simulation models. Percentage changes of PD-L1 expression with respect to control baselines were determined and verified against observed PD-L1 expression by ELISA, IHC, and flow cytometry on the same cells grown in culture.
Result
The observed PD-L1 expression matched the predicted PD-L1 expression for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines and clearly demonstrated that cell genomics play an integral role by influencing cell signaling and downstream effects on PD-L1 expression.
Conclusion
This concept can easily be extended to cancer patient cells where an accurate method to predict PD-L1 expression would affirm IHC results and improve its potential as a biomarker and a clinical predictor of treatment success.</description><subject>Adult</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Carcinoma, Squamous Cell - genetics</subject><subject>Carcinoma, Squamous Cell - pathology</subject><subject>Cells</subject><subject>Computer Simulation</subject><subject>Dentistry</subject><subject>Genomics</subject><subject>Humans</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Interferon</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Molecular Dynamics Simulation</subject><subject>Mouth Neoplasms - genetics</subject><subject>Mouth Neoplasms - pathology</subject><subject>Multiple myeloma</subject><subject>Multiple Myeloma - genetics</subject><subject>Multiple Myeloma - pathology</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Pathogenesis</subject><subject>Patients</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Tumors</subject><issn>0340-7004</issn><issn>1432-0851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1rFTEUhoMo9lr9AW5kwE03Y08-JplsBKmfcMEudB3SzJnblJnkmsyUuuw_N9OppS0IQiDJeZ_zJic5hLym8I4CqOMMwCSrgcqaalB184RsqOAl0jb0KdkAF1ArAHFAXuR8URYMtH5ODpiSbUsl35Dr04Sdd5MPu-r0Y72lFV7tE-bsY6jKOJ9HGypng8NUORyGXM15gQNeTfUOAyY7LWzGXzMGt0g-9DGNa9iX5Dju5-lma4cq-3EeVm2MHQ75JXnW2yHjq9v5kPz8_OnHydd6-_3Lt5MP29o1wKe665F2jYWOMc01AkjglOoWwEnhJKJQtoCu75sGe0tbVJ1WQmiw3ZnqgR-S96vvfj4bsXMYpmQHs09-tOm3idabh0rw52YXL03DtWikKgZHtwYpllrzZEaflyexAeOcDW2FFJTL_0K54iCpagv69hF6EedUXmqlgDImmkLRlXIp5pywv7s3BbP0gll7wZReMEsvmCXnzf2C7zL-fn4B2ArkIoUdpntH_9P1D9ZswcI</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Lanzel, Emily A.</creator><creator>Paula Gomez Hernandez, M.</creator><creator>Bates, Amber M.</creator><creator>Treinen, Christopher N.</creator><creator>Starman, Emily E.</creator><creator>Fischer, Carol L.</creator><creator>Parashar, Deepak</creator><creator>Guthmiller, Janet M.</creator><creator>Johnson, Georgia K.</creator><creator>Abbasi, Taher</creator><creator>Vali, Shireen</creator><creator>Brogden, Kim A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models</title><author>Lanzel, Emily A. ; Paula Gomez Hernandez, M. ; Bates, Amber M. ; Treinen, Christopher N. ; Starman, Emily E. ; Fischer, Carol L. ; Parashar, Deepak ; Guthmiller, Janet M. ; Johnson, Georgia K. ; Abbasi, Taher ; Vali, Shireen ; Brogden, Kim A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-dfe1d5a0d22939e00603119800c64c6ee47a503cff55efa18e7d974490adb7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Carcinoma, Squamous Cell - genetics</topic><topic>Carcinoma, Squamous Cell - pathology</topic><topic>Cells</topic><topic>Computer Simulation</topic><topic>Dentistry</topic><topic>Genomics</topic><topic>Humans</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Interferon</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Molecular Dynamics Simulation</topic><topic>Mouth Neoplasms - genetics</topic><topic>Mouth Neoplasms - pathology</topic><topic>Multiple myeloma</topic><topic>Multiple Myeloma - genetics</topic><topic>Multiple Myeloma - pathology</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Pathogenesis</topic><topic>Patients</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanzel, Emily A.</creatorcontrib><creatorcontrib>Paula Gomez Hernandez, M.</creatorcontrib><creatorcontrib>Bates, Amber M.</creatorcontrib><creatorcontrib>Treinen, Christopher N.</creatorcontrib><creatorcontrib>Starman, Emily E.</creatorcontrib><creatorcontrib>Fischer, Carol L.</creatorcontrib><creatorcontrib>Parashar, Deepak</creatorcontrib><creatorcontrib>Guthmiller, Janet M.</creatorcontrib><creatorcontrib>Johnson, Georgia K.</creatorcontrib><creatorcontrib>Abbasi, Taher</creatorcontrib><creatorcontrib>Vali, Shireen</creatorcontrib><creatorcontrib>Brogden, Kim A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer Immunology, Immunotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanzel, Emily A.</au><au>Paula Gomez Hernandez, M.</au><au>Bates, Amber M.</au><au>Treinen, Christopher N.</au><au>Starman, Emily E.</au><au>Fischer, Carol L.</au><au>Parashar, Deepak</au><au>Guthmiller, Janet M.</au><au>Johnson, Georgia K.</au><au>Abbasi, Taher</au><au>Vali, Shireen</au><au>Brogden, Kim A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models</atitle><jtitle>Cancer Immunology, Immunotherapy</jtitle><stitle>Cancer Immunol Immunother</stitle><addtitle>Cancer Immunol Immunother</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>65</volume><issue>12</issue><spage>1511</spage><epage>1522</epage><pages>1511-1522</pages><issn>0340-7004</issn><eissn>1432-0851</eissn><abstract>Purpose
Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is important as both a diagnostic aid and a clinical predictor of immunotherapy treatment success. Because IHC reactivity can vary, we developed computational simulation models to accurately predict PD-L1 expression as a complementary assay to affirm IHC reactivity.
Methods
Multiple myeloma (MM) and oral squamous cell carcinoma (SCC) cell lines were modeled as examples of our approach. Non-transformed cell models were first simulated to establish non-tumorigenic control baselines. Cell line genomic aberration profiles, from next-generation sequencing (NGS) information for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines, were introduced into the workflow to create cancer cell line-specific simulation models. Percentage changes of PD-L1 expression with respect to control baselines were determined and verified against observed PD-L1 expression by ELISA, IHC, and flow cytometry on the same cells grown in culture.
Result
The observed PD-L1 expression matched the predicted PD-L1 expression for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines and clearly demonstrated that cell genomics play an integral role by influencing cell signaling and downstream effects on PD-L1 expression.
Conclusion
This concept can easily be extended to cancer patient cells where an accurate method to predict PD-L1 expression would affirm IHC results and improve its potential as a biomarker and a clinical predictor of treatment success.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27688163</pmid><doi>10.1007/s00262-016-1907-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-7004 |
ispartof | Cancer Immunology, Immunotherapy, 2016-12, Vol.65 (12), p.1511-1522 |
issn | 0340-7004 1432-0851 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394567 |
source | MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | Adult B7-H1 Antigen - metabolism Biomarkers Cancer Cancer Research Carcinoma, Squamous Cell - genetics Carcinoma, Squamous Cell - pathology Cells Computer Simulation Dentistry Genomics Humans Immunology Immunotherapy Interferon Kinases Ligands Lymphocytes Medical prognosis Medicine Medicine & Public Health Middle Aged Models, Biological Molecular Dynamics Simulation Mouth Neoplasms - genetics Mouth Neoplasms - pathology Multiple myeloma Multiple Myeloma - genetics Multiple Myeloma - pathology Oncology Original Article Pathogenesis Patients Proteins Simulation Tumors |
title | Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20PD-L1%20expression%20on%20human%20cancer%20cells%20using%20next-generation%20sequencing%20information%20in%20computational%20simulation%20models&rft.jtitle=Cancer%20Immunology,%20Immunotherapy&rft.au=Lanzel,%20Emily%20A.&rft.date=2016-12-01&rft.volume=65&rft.issue=12&rft.spage=1511&rft.epage=1522&rft.pages=1511-1522&rft.issn=0340-7004&rft.eissn=1432-0851&rft_id=info:doi/10.1007/s00262-016-1907-5&rft_dat=%3Cproquest_pubme%3E1837306178%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837012245&rft_id=info:pmid/27688163&rfr_iscdi=true |