Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models

Purpose Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is import...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer Immunology, Immunotherapy Immunotherapy, 2016-12, Vol.65 (12), p.1511-1522
Hauptverfasser: Lanzel, Emily A., Paula Gomez Hernandez, M., Bates, Amber M., Treinen, Christopher N., Starman, Emily E., Fischer, Carol L., Parashar, Deepak, Guthmiller, Janet M., Johnson, Georgia K., Abbasi, Taher, Vali, Shireen, Brogden, Kim A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1522
container_issue 12
container_start_page 1511
container_title Cancer Immunology, Immunotherapy
container_volume 65
creator Lanzel, Emily A.
Paula Gomez Hernandez, M.
Bates, Amber M.
Treinen, Christopher N.
Starman, Emily E.
Fischer, Carol L.
Parashar, Deepak
Guthmiller, Janet M.
Johnson, Georgia K.
Abbasi, Taher
Vali, Shireen
Brogden, Kim A.
description Purpose Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is important as both a diagnostic aid and a clinical predictor of immunotherapy treatment success. Because IHC reactivity can vary, we developed computational simulation models to accurately predict PD-L1 expression as a complementary assay to affirm IHC reactivity. Methods Multiple myeloma (MM) and oral squamous cell carcinoma (SCC) cell lines were modeled as examples of our approach. Non-transformed cell models were first simulated to establish non-tumorigenic control baselines. Cell line genomic aberration profiles, from next-generation sequencing (NGS) information for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines, were introduced into the workflow to create cancer cell line-specific simulation models. Percentage changes of PD-L1 expression with respect to control baselines were determined and verified against observed PD-L1 expression by ELISA, IHC, and flow cytometry on the same cells grown in culture. Result The observed PD-L1 expression matched the predicted PD-L1 expression for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines and clearly demonstrated that cell genomics play an integral role by influencing cell signaling and downstream effects on PD-L1 expression. Conclusion This concept can easily be extended to cancer patient cells where an accurate method to predict PD-L1 expression would affirm IHC results and improve its potential as a biomarker and a clinical predictor of treatment success.
doi_str_mv 10.1007/s00262-016-1907-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837306178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-dfe1d5a0d22939e00603119800c64c6ee47a503cff55efa18e7d974490adb7f03</originalsourceid><addsrcrecordid>eNqNkk1rFTEUhoMo9lr9AW5kwE03Y08-JplsBKmfcMEudB3SzJnblJnkmsyUuuw_N9OppS0IQiDJeZ_zJic5hLym8I4CqOMMwCSrgcqaalB184RsqOAl0jb0KdkAF1ArAHFAXuR8URYMtH5ODpiSbUsl35Dr04Sdd5MPu-r0Y72lFV7tE-bsY6jKOJ9HGypng8NUORyGXM15gQNeTfUOAyY7LWzGXzMGt0g-9DGNa9iX5Dju5-lma4cq-3EeVm2MHQ75JXnW2yHjq9v5kPz8_OnHydd6-_3Lt5MP29o1wKe665F2jYWOMc01AkjglOoWwEnhJKJQtoCu75sGe0tbVJ1WQmiw3ZnqgR-S96vvfj4bsXMYpmQHs09-tOm3idabh0rw52YXL03DtWikKgZHtwYpllrzZEaflyexAeOcDW2FFJTL_0K54iCpagv69hF6EedUXmqlgDImmkLRlXIp5pywv7s3BbP0gll7wZReMEsvmCXnzf2C7zL-fn4B2ArkIoUdpntH_9P1D9ZswcI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837012245</pqid></control><display><type>article</type><title>Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models</title><source>MEDLINE</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lanzel, Emily A. ; Paula Gomez Hernandez, M. ; Bates, Amber M. ; Treinen, Christopher N. ; Starman, Emily E. ; Fischer, Carol L. ; Parashar, Deepak ; Guthmiller, Janet M. ; Johnson, Georgia K. ; Abbasi, Taher ; Vali, Shireen ; Brogden, Kim A.</creator><creatorcontrib>Lanzel, Emily A. ; Paula Gomez Hernandez, M. ; Bates, Amber M. ; Treinen, Christopher N. ; Starman, Emily E. ; Fischer, Carol L. ; Parashar, Deepak ; Guthmiller, Janet M. ; Johnson, Georgia K. ; Abbasi, Taher ; Vali, Shireen ; Brogden, Kim A.</creatorcontrib><description>Purpose Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is important as both a diagnostic aid and a clinical predictor of immunotherapy treatment success. Because IHC reactivity can vary, we developed computational simulation models to accurately predict PD-L1 expression as a complementary assay to affirm IHC reactivity. Methods Multiple myeloma (MM) and oral squamous cell carcinoma (SCC) cell lines were modeled as examples of our approach. Non-transformed cell models were first simulated to establish non-tumorigenic control baselines. Cell line genomic aberration profiles, from next-generation sequencing (NGS) information for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines, were introduced into the workflow to create cancer cell line-specific simulation models. Percentage changes of PD-L1 expression with respect to control baselines were determined and verified against observed PD-L1 expression by ELISA, IHC, and flow cytometry on the same cells grown in culture. Result The observed PD-L1 expression matched the predicted PD-L1 expression for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines and clearly demonstrated that cell genomics play an integral role by influencing cell signaling and downstream effects on PD-L1 expression. Conclusion This concept can easily be extended to cancer patient cells where an accurate method to predict PD-L1 expression would affirm IHC results and improve its potential as a biomarker and a clinical predictor of treatment success.</description><identifier>ISSN: 0340-7004</identifier><identifier>EISSN: 1432-0851</identifier><identifier>DOI: 10.1007/s00262-016-1907-5</identifier><identifier>PMID: 27688163</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; B7-H1 Antigen - metabolism ; Biomarkers ; Cancer ; Cancer Research ; Carcinoma, Squamous Cell - genetics ; Carcinoma, Squamous Cell - pathology ; Cells ; Computer Simulation ; Dentistry ; Genomics ; Humans ; Immunology ; Immunotherapy ; Interferon ; Kinases ; Ligands ; Lymphocytes ; Medical prognosis ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Models, Biological ; Molecular Dynamics Simulation ; Mouth Neoplasms - genetics ; Mouth Neoplasms - pathology ; Multiple myeloma ; Multiple Myeloma - genetics ; Multiple Myeloma - pathology ; Oncology ; Original Article ; Pathogenesis ; Patients ; Proteins ; Simulation ; Tumors</subject><ispartof>Cancer Immunology, Immunotherapy, 2016-12, Vol.65 (12), p.1511-1522</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-dfe1d5a0d22939e00603119800c64c6ee47a503cff55efa18e7d974490adb7f03</citedby><cites>FETCH-LOGICAL-c503t-dfe1d5a0d22939e00603119800c64c6ee47a503cff55efa18e7d974490adb7f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394567/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394567/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27688163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lanzel, Emily A.</creatorcontrib><creatorcontrib>Paula Gomez Hernandez, M.</creatorcontrib><creatorcontrib>Bates, Amber M.</creatorcontrib><creatorcontrib>Treinen, Christopher N.</creatorcontrib><creatorcontrib>Starman, Emily E.</creatorcontrib><creatorcontrib>Fischer, Carol L.</creatorcontrib><creatorcontrib>Parashar, Deepak</creatorcontrib><creatorcontrib>Guthmiller, Janet M.</creatorcontrib><creatorcontrib>Johnson, Georgia K.</creatorcontrib><creatorcontrib>Abbasi, Taher</creatorcontrib><creatorcontrib>Vali, Shireen</creatorcontrib><creatorcontrib>Brogden, Kim A.</creatorcontrib><title>Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models</title><title>Cancer Immunology, Immunotherapy</title><addtitle>Cancer Immunol Immunother</addtitle><addtitle>Cancer Immunol Immunother</addtitle><description>Purpose Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is important as both a diagnostic aid and a clinical predictor of immunotherapy treatment success. Because IHC reactivity can vary, we developed computational simulation models to accurately predict PD-L1 expression as a complementary assay to affirm IHC reactivity. Methods Multiple myeloma (MM) and oral squamous cell carcinoma (SCC) cell lines were modeled as examples of our approach. Non-transformed cell models were first simulated to establish non-tumorigenic control baselines. Cell line genomic aberration profiles, from next-generation sequencing (NGS) information for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines, were introduced into the workflow to create cancer cell line-specific simulation models. Percentage changes of PD-L1 expression with respect to control baselines were determined and verified against observed PD-L1 expression by ELISA, IHC, and flow cytometry on the same cells grown in culture. Result The observed PD-L1 expression matched the predicted PD-L1 expression for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines and clearly demonstrated that cell genomics play an integral role by influencing cell signaling and downstream effects on PD-L1 expression. Conclusion This concept can easily be extended to cancer patient cells where an accurate method to predict PD-L1 expression would affirm IHC results and improve its potential as a biomarker and a clinical predictor of treatment success.</description><subject>Adult</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Carcinoma, Squamous Cell - genetics</subject><subject>Carcinoma, Squamous Cell - pathology</subject><subject>Cells</subject><subject>Computer Simulation</subject><subject>Dentistry</subject><subject>Genomics</subject><subject>Humans</subject><subject>Immunology</subject><subject>Immunotherapy</subject><subject>Interferon</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Lymphocytes</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>Molecular Dynamics Simulation</subject><subject>Mouth Neoplasms - genetics</subject><subject>Mouth Neoplasms - pathology</subject><subject>Multiple myeloma</subject><subject>Multiple Myeloma - genetics</subject><subject>Multiple Myeloma - pathology</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Pathogenesis</subject><subject>Patients</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Tumors</subject><issn>0340-7004</issn><issn>1432-0851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1rFTEUhoMo9lr9AW5kwE03Y08-JplsBKmfcMEudB3SzJnblJnkmsyUuuw_N9OppS0IQiDJeZ_zJic5hLym8I4CqOMMwCSrgcqaalB184RsqOAl0jb0KdkAF1ArAHFAXuR8URYMtH5ODpiSbUsl35Dr04Sdd5MPu-r0Y72lFV7tE-bsY6jKOJ9HGypng8NUORyGXM15gQNeTfUOAyY7LWzGXzMGt0g-9DGNa9iX5Dju5-lma4cq-3EeVm2MHQ75JXnW2yHjq9v5kPz8_OnHydd6-_3Lt5MP29o1wKe665F2jYWOMc01AkjglOoWwEnhJKJQtoCu75sGe0tbVJ1WQmiw3ZnqgR-S96vvfj4bsXMYpmQHs09-tOm3idabh0rw52YXL03DtWikKgZHtwYpllrzZEaflyexAeOcDW2FFJTL_0K54iCpagv69hF6EedUXmqlgDImmkLRlXIp5pywv7s3BbP0gll7wZReMEsvmCXnzf2C7zL-fn4B2ArkIoUdpntH_9P1D9ZswcI</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Lanzel, Emily A.</creator><creator>Paula Gomez Hernandez, M.</creator><creator>Bates, Amber M.</creator><creator>Treinen, Christopher N.</creator><creator>Starman, Emily E.</creator><creator>Fischer, Carol L.</creator><creator>Parashar, Deepak</creator><creator>Guthmiller, Janet M.</creator><creator>Johnson, Georgia K.</creator><creator>Abbasi, Taher</creator><creator>Vali, Shireen</creator><creator>Brogden, Kim A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20161201</creationdate><title>Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models</title><author>Lanzel, Emily A. ; Paula Gomez Hernandez, M. ; Bates, Amber M. ; Treinen, Christopher N. ; Starman, Emily E. ; Fischer, Carol L. ; Parashar, Deepak ; Guthmiller, Janet M. ; Johnson, Georgia K. ; Abbasi, Taher ; Vali, Shireen ; Brogden, Kim A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-dfe1d5a0d22939e00603119800c64c6ee47a503cff55efa18e7d974490adb7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Carcinoma, Squamous Cell - genetics</topic><topic>Carcinoma, Squamous Cell - pathology</topic><topic>Cells</topic><topic>Computer Simulation</topic><topic>Dentistry</topic><topic>Genomics</topic><topic>Humans</topic><topic>Immunology</topic><topic>Immunotherapy</topic><topic>Interferon</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Lymphocytes</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>Molecular Dynamics Simulation</topic><topic>Mouth Neoplasms - genetics</topic><topic>Mouth Neoplasms - pathology</topic><topic>Multiple myeloma</topic><topic>Multiple Myeloma - genetics</topic><topic>Multiple Myeloma - pathology</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Pathogenesis</topic><topic>Patients</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanzel, Emily A.</creatorcontrib><creatorcontrib>Paula Gomez Hernandez, M.</creatorcontrib><creatorcontrib>Bates, Amber M.</creatorcontrib><creatorcontrib>Treinen, Christopher N.</creatorcontrib><creatorcontrib>Starman, Emily E.</creatorcontrib><creatorcontrib>Fischer, Carol L.</creatorcontrib><creatorcontrib>Parashar, Deepak</creatorcontrib><creatorcontrib>Guthmiller, Janet M.</creatorcontrib><creatorcontrib>Johnson, Georgia K.</creatorcontrib><creatorcontrib>Abbasi, Taher</creatorcontrib><creatorcontrib>Vali, Shireen</creatorcontrib><creatorcontrib>Brogden, Kim A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer Immunology, Immunotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanzel, Emily A.</au><au>Paula Gomez Hernandez, M.</au><au>Bates, Amber M.</au><au>Treinen, Christopher N.</au><au>Starman, Emily E.</au><au>Fischer, Carol L.</au><au>Parashar, Deepak</au><au>Guthmiller, Janet M.</au><au>Johnson, Georgia K.</au><au>Abbasi, Taher</au><au>Vali, Shireen</au><au>Brogden, Kim A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models</atitle><jtitle>Cancer Immunology, Immunotherapy</jtitle><stitle>Cancer Immunol Immunother</stitle><addtitle>Cancer Immunol Immunother</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>65</volume><issue>12</issue><spage>1511</spage><epage>1522</epage><pages>1511-1522</pages><issn>0340-7004</issn><eissn>1432-0851</eissn><abstract>Purpose Interaction of the programmed death-1 (PD-1) co-receptor on T cells with the programmed death-ligand 1 (PD-L1) on tumor cells can lead to immunosuppression, a key event in the pathogenesis of many tumors. Thus, determining the amount of PD-L1 in tumors by immunohistochemistry (IHC) is important as both a diagnostic aid and a clinical predictor of immunotherapy treatment success. Because IHC reactivity can vary, we developed computational simulation models to accurately predict PD-L1 expression as a complementary assay to affirm IHC reactivity. Methods Multiple myeloma (MM) and oral squamous cell carcinoma (SCC) cell lines were modeled as examples of our approach. Non-transformed cell models were first simulated to establish non-tumorigenic control baselines. Cell line genomic aberration profiles, from next-generation sequencing (NGS) information for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines, were introduced into the workflow to create cancer cell line-specific simulation models. Percentage changes of PD-L1 expression with respect to control baselines were determined and verified against observed PD-L1 expression by ELISA, IHC, and flow cytometry on the same cells grown in culture. Result The observed PD-L1 expression matched the predicted PD-L1 expression for MM.1S, U266B1, SCC4, SCC15, and SCC25 cell lines and clearly demonstrated that cell genomics play an integral role by influencing cell signaling and downstream effects on PD-L1 expression. Conclusion This concept can easily be extended to cancer patient cells where an accurate method to predict PD-L1 expression would affirm IHC results and improve its potential as a biomarker and a clinical predictor of treatment success.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27688163</pmid><doi>10.1007/s00262-016-1907-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0340-7004
ispartof Cancer Immunology, Immunotherapy, 2016-12, Vol.65 (12), p.1511-1522
issn 0340-7004
1432-0851
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5394567
source MEDLINE; PubMed Central; SpringerLink Journals - AutoHoldings
subjects Adult
B7-H1 Antigen - metabolism
Biomarkers
Cancer
Cancer Research
Carcinoma, Squamous Cell - genetics
Carcinoma, Squamous Cell - pathology
Cells
Computer Simulation
Dentistry
Genomics
Humans
Immunology
Immunotherapy
Interferon
Kinases
Ligands
Lymphocytes
Medical prognosis
Medicine
Medicine & Public Health
Middle Aged
Models, Biological
Molecular Dynamics Simulation
Mouth Neoplasms - genetics
Mouth Neoplasms - pathology
Multiple myeloma
Multiple Myeloma - genetics
Multiple Myeloma - pathology
Oncology
Original Article
Pathogenesis
Patients
Proteins
Simulation
Tumors
title Predicting PD-L1 expression on human cancer cells using next-generation sequencing information in computational simulation models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20PD-L1%20expression%20on%20human%20cancer%20cells%20using%20next-generation%20sequencing%20information%20in%20computational%20simulation%20models&rft.jtitle=Cancer%20Immunology,%20Immunotherapy&rft.au=Lanzel,%20Emily%20A.&rft.date=2016-12-01&rft.volume=65&rft.issue=12&rft.spage=1511&rft.epage=1522&rft.pages=1511-1522&rft.issn=0340-7004&rft.eissn=1432-0851&rft_id=info:doi/10.1007/s00262-016-1907-5&rft_dat=%3Cproquest_pubme%3E1837306178%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837012245&rft_id=info:pmid/27688163&rfr_iscdi=true