Essential role for centromeric factors following p53 loss and oncogenic transformation

In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2017-03, Vol.31 (5), p.463-480
Hauptverfasser: Filipescu, Dan, Naughtin, Monica, Podsypanina, Katrina, Lejour, Vincent, Wilson, Laurence, Gurard-Levin, Zachary A, Orsi, Guillermo A, Simeonova, Iva, Toufektchan, Eleonore, Attardi, Laura D, Toledo, Franck, Almouzni, Geneviève
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 5
container_start_page 463
container_title Genes & development
container_volume 31
creator Filipescu, Dan
Naughtin, Monica
Podsypanina, Katrina
Lejour, Vincent
Wilson, Laurence
Gurard-Levin, Zachary A
Orsi, Guillermo A
Simeonova, Iva
Toufektchan, Eleonore
Attardi, Laura D
Toledo, Franck
Almouzni, Geneviève
description In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the and promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.
doi_str_mv 10.1101/gad.290924.116
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5393061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897370476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-b0cd334c19bc579ff78e58045d8c8268723493a76902c7623d6c581a1b8a72043</originalsourceid><addsrcrecordid>eNpdkUtPGzEUhS3UCsJjyxLNsiwmvX7bGySEoCBF6qbt1nI8njDIYwd7QsW_r9MAAlbWPf7O8eMgdIphjjHg7yvbzYkGTVidxR6aYc50y5mUX9AMlIZWU6EP0GEpDwAgQIh9dEAU5YIyPEN_rkvxcRpsaHIKvulTblwVchp9HlzTWzelXKoeQvo7xFWz5rQJqZTGxq5J0aWVjxWcso2lukc7DSkeo6-9DcWfvKxH6PfN9a-r23bx88fd1eWidZzQqV2C6yhlDuul41L3vVSeK2C8U04RoSShTFMrhQbipCC0E44rbPFSWUmA0SN0sctdb5aj7_7f3AazzsNo87NJdjAfd-Jwb1bpyXCqKQhcA853AfefbLeXC7PVAHNgisunLfvt5bCcHje-TGYcivMh2OjTphistKQSmBQVne9Ql-tXZd-_ZWMw2-JMLc7siqvz1nD2_iFv-GtT9B_qK5Qq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897370476</pqid></control><display><type>article</type><title>Essential role for centromeric factors following p53 loss and oncogenic transformation</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Filipescu, Dan ; Naughtin, Monica ; Podsypanina, Katrina ; Lejour, Vincent ; Wilson, Laurence ; Gurard-Levin, Zachary A ; Orsi, Guillermo A ; Simeonova, Iva ; Toufektchan, Eleonore ; Attardi, Laura D ; Toledo, Franck ; Almouzni, Geneviève</creator><creatorcontrib>Filipescu, Dan ; Naughtin, Monica ; Podsypanina, Katrina ; Lejour, Vincent ; Wilson, Laurence ; Gurard-Levin, Zachary A ; Orsi, Guillermo A ; Simeonova, Iva ; Toufektchan, Eleonore ; Attardi, Laura D ; Toledo, Franck ; Almouzni, Geneviève</creatorcontrib><description>In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the and promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.290924.116</identifier><identifier>PMID: 28356341</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Amino Acid Motifs - genetics ; Animals ; Autoantigens - genetics ; Autoantigens - metabolism ; Cell Line ; Cell Transformation, Neoplastic - genetics ; Cells, Cultured ; Centromere - metabolism ; Centromere Protein A ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Chromosome Segregation - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Female ; Gene Deletion ; Gene Expression Regulation, Neoplastic ; Genes, p53 - genetics ; Genomic Instability - genetics ; Human health and pathology ; Humans ; Life Sciences ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Models, Animal ; Oncogenes - genetics ; Research Paper</subject><ispartof>Genes &amp; development, 2017-03, Vol.31 (5), p.463-480</ispartof><rights>2017 Filipescu et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Attribution</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-b0cd334c19bc579ff78e58045d8c8268723493a76902c7623d6c581a1b8a72043</citedby><cites>FETCH-LOGICAL-c523t-b0cd334c19bc579ff78e58045d8c8268723493a76902c7623d6c581a1b8a72043</cites><orcidid>0000-0001-5570-0723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393061/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393061/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28356341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01504857$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipescu, Dan</creatorcontrib><creatorcontrib>Naughtin, Monica</creatorcontrib><creatorcontrib>Podsypanina, Katrina</creatorcontrib><creatorcontrib>Lejour, Vincent</creatorcontrib><creatorcontrib>Wilson, Laurence</creatorcontrib><creatorcontrib>Gurard-Levin, Zachary A</creatorcontrib><creatorcontrib>Orsi, Guillermo A</creatorcontrib><creatorcontrib>Simeonova, Iva</creatorcontrib><creatorcontrib>Toufektchan, Eleonore</creatorcontrib><creatorcontrib>Attardi, Laura D</creatorcontrib><creatorcontrib>Toledo, Franck</creatorcontrib><creatorcontrib>Almouzni, Geneviève</creatorcontrib><title>Essential role for centromeric factors following p53 loss and oncogenic transformation</title><title>Genes &amp; development</title><addtitle>Genes Dev</addtitle><description>In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the and promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.</description><subject>Amino Acid Motifs - genetics</subject><subject>Animals</subject><subject>Autoantigens - genetics</subject><subject>Autoantigens - metabolism</subject><subject>Cell Line</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cells, Cultured</subject><subject>Centromere - metabolism</subject><subject>Centromere Protein A</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Chromosome Segregation - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Female</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes, p53 - genetics</subject><subject>Genomic Instability - genetics</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Animal</subject><subject>Oncogenes - genetics</subject><subject>Research Paper</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtPGzEUhS3UCsJjyxLNsiwmvX7bGySEoCBF6qbt1nI8njDIYwd7QsW_r9MAAlbWPf7O8eMgdIphjjHg7yvbzYkGTVidxR6aYc50y5mUX9AMlIZWU6EP0GEpDwAgQIh9dEAU5YIyPEN_rkvxcRpsaHIKvulTblwVchp9HlzTWzelXKoeQvo7xFWz5rQJqZTGxq5J0aWVjxWcso2lukc7DSkeo6-9DcWfvKxH6PfN9a-r23bx88fd1eWidZzQqV2C6yhlDuul41L3vVSeK2C8U04RoSShTFMrhQbipCC0E44rbPFSWUmA0SN0sctdb5aj7_7f3AazzsNo87NJdjAfd-Jwb1bpyXCqKQhcA853AfefbLeXC7PVAHNgisunLfvt5bCcHje-TGYcivMh2OjTphistKQSmBQVne9Ql-tXZd-_ZWMw2-JMLc7siqvz1nD2_iFv-GtT9B_qK5Qq</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Filipescu, Dan</creator><creator>Naughtin, Monica</creator><creator>Podsypanina, Katrina</creator><creator>Lejour, Vincent</creator><creator>Wilson, Laurence</creator><creator>Gurard-Levin, Zachary A</creator><creator>Orsi, Guillermo A</creator><creator>Simeonova, Iva</creator><creator>Toufektchan, Eleonore</creator><creator>Attardi, Laura D</creator><creator>Toledo, Franck</creator><creator>Almouzni, Geneviève</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5570-0723</orcidid></search><sort><creationdate>20170301</creationdate><title>Essential role for centromeric factors following p53 loss and oncogenic transformation</title><author>Filipescu, Dan ; Naughtin, Monica ; Podsypanina, Katrina ; Lejour, Vincent ; Wilson, Laurence ; Gurard-Levin, Zachary A ; Orsi, Guillermo A ; Simeonova, Iva ; Toufektchan, Eleonore ; Attardi, Laura D ; Toledo, Franck ; Almouzni, Geneviève</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-b0cd334c19bc579ff78e58045d8c8268723493a76902c7623d6c581a1b8a72043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs - genetics</topic><topic>Animals</topic><topic>Autoantigens - genetics</topic><topic>Autoantigens - metabolism</topic><topic>Cell Line</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cells, Cultured</topic><topic>Centromere - metabolism</topic><topic>Centromere Protein A</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Chromosome Segregation - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Female</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes, p53 - genetics</topic><topic>Genomic Instability - genetics</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Animal</topic><topic>Oncogenes - genetics</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipescu, Dan</creatorcontrib><creatorcontrib>Naughtin, Monica</creatorcontrib><creatorcontrib>Podsypanina, Katrina</creatorcontrib><creatorcontrib>Lejour, Vincent</creatorcontrib><creatorcontrib>Wilson, Laurence</creatorcontrib><creatorcontrib>Gurard-Levin, Zachary A</creatorcontrib><creatorcontrib>Orsi, Guillermo A</creatorcontrib><creatorcontrib>Simeonova, Iva</creatorcontrib><creatorcontrib>Toufektchan, Eleonore</creatorcontrib><creatorcontrib>Attardi, Laura D</creatorcontrib><creatorcontrib>Toledo, Franck</creatorcontrib><creatorcontrib>Almouzni, Geneviève</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipescu, Dan</au><au>Naughtin, Monica</au><au>Podsypanina, Katrina</au><au>Lejour, Vincent</au><au>Wilson, Laurence</au><au>Gurard-Levin, Zachary A</au><au>Orsi, Guillermo A</au><au>Simeonova, Iva</au><au>Toufektchan, Eleonore</au><au>Attardi, Laura D</au><au>Toledo, Franck</au><au>Almouzni, Geneviève</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential role for centromeric factors following p53 loss and oncogenic transformation</atitle><jtitle>Genes &amp; development</jtitle><addtitle>Genes Dev</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>31</volume><issue>5</issue><spage>463</spage><epage>480</epage><pages>463-480</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the and promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>28356341</pmid><doi>10.1101/gad.290924.116</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5570-0723</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-9369
ispartof Genes & development, 2017-03, Vol.31 (5), p.463-480
issn 0890-9369
1549-5477
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5393061
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amino Acid Motifs - genetics
Animals
Autoantigens - genetics
Autoantigens - metabolism
Cell Line
Cell Transformation, Neoplastic - genetics
Cells, Cultured
Centromere - metabolism
Centromere Protein A
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Chromosome Segregation - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Female
Gene Deletion
Gene Expression Regulation, Neoplastic
Genes, p53 - genetics
Genomic Instability - genetics
Human health and pathology
Humans
Life Sciences
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Models, Animal
Oncogenes - genetics
Research Paper
title Essential role for centromeric factors following p53 loss and oncogenic transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20role%20for%20centromeric%20factors%20following%20p53%20loss%20and%20oncogenic%20transformation&rft.jtitle=Genes%20&%20development&rft.au=Filipescu,%20Dan&rft.date=2017-03-01&rft.volume=31&rft.issue=5&rft.spage=463&rft.epage=480&rft.pages=463-480&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.290924.116&rft_dat=%3Cproquest_pubme%3E1897370476%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897370476&rft_id=info:pmid/28356341&rfr_iscdi=true