Essential role for centromeric factors following p53 loss and oncogenic transformation
In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in c...
Gespeichert in:
Veröffentlicht in: | Genes & development 2017-03, Vol.31 (5), p.463-480 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 5 |
container_start_page | 463 |
container_title | Genes & development |
container_volume | 31 |
creator | Filipescu, Dan Naughtin, Monica Podsypanina, Katrina Lejour, Vincent Wilson, Laurence Gurard-Levin, Zachary A Orsi, Guillermo A Simeonova, Iva Toufektchan, Eleonore Attardi, Laura D Toledo, Franck Almouzni, Geneviève |
description | In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the
and
promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells. |
doi_str_mv | 10.1101/gad.290924.116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5393061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897370476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-b0cd334c19bc579ff78e58045d8c8268723493a76902c7623d6c581a1b8a72043</originalsourceid><addsrcrecordid>eNpdkUtPGzEUhS3UCsJjyxLNsiwmvX7bGySEoCBF6qbt1nI8njDIYwd7QsW_r9MAAlbWPf7O8eMgdIphjjHg7yvbzYkGTVidxR6aYc50y5mUX9AMlIZWU6EP0GEpDwAgQIh9dEAU5YIyPEN_rkvxcRpsaHIKvulTblwVchp9HlzTWzelXKoeQvo7xFWz5rQJqZTGxq5J0aWVjxWcso2lukc7DSkeo6-9DcWfvKxH6PfN9a-r23bx88fd1eWidZzQqV2C6yhlDuul41L3vVSeK2C8U04RoSShTFMrhQbipCC0E44rbPFSWUmA0SN0sctdb5aj7_7f3AazzsNo87NJdjAfd-Jwb1bpyXCqKQhcA853AfefbLeXC7PVAHNgisunLfvt5bCcHje-TGYcivMh2OjTphistKQSmBQVne9Ql-tXZd-_ZWMw2-JMLc7siqvz1nD2_iFv-GtT9B_qK5Qq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1897370476</pqid></control><display><type>article</type><title>Essential role for centromeric factors following p53 loss and oncogenic transformation</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Filipescu, Dan ; Naughtin, Monica ; Podsypanina, Katrina ; Lejour, Vincent ; Wilson, Laurence ; Gurard-Levin, Zachary A ; Orsi, Guillermo A ; Simeonova, Iva ; Toufektchan, Eleonore ; Attardi, Laura D ; Toledo, Franck ; Almouzni, Geneviève</creator><creatorcontrib>Filipescu, Dan ; Naughtin, Monica ; Podsypanina, Katrina ; Lejour, Vincent ; Wilson, Laurence ; Gurard-Levin, Zachary A ; Orsi, Guillermo A ; Simeonova, Iva ; Toufektchan, Eleonore ; Attardi, Laura D ; Toledo, Franck ; Almouzni, Geneviève</creatorcontrib><description>In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the
and
promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.</description><identifier>ISSN: 0890-9369</identifier><identifier>EISSN: 1549-5477</identifier><identifier>DOI: 10.1101/gad.290924.116</identifier><identifier>PMID: 28356341</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>Amino Acid Motifs - genetics ; Animals ; Autoantigens - genetics ; Autoantigens - metabolism ; Cell Line ; Cell Transformation, Neoplastic - genetics ; Cells, Cultured ; Centromere - metabolism ; Centromere Protein A ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Chromosome Segregation - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Female ; Gene Deletion ; Gene Expression Regulation, Neoplastic ; Genes, p53 - genetics ; Genomic Instability - genetics ; Human health and pathology ; Humans ; Life Sciences ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Models, Animal ; Oncogenes - genetics ; Research Paper</subject><ispartof>Genes & development, 2017-03, Vol.31 (5), p.463-480</ispartof><rights>2017 Filipescu et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Attribution</rights><rights>2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-b0cd334c19bc579ff78e58045d8c8268723493a76902c7623d6c581a1b8a72043</citedby><cites>FETCH-LOGICAL-c523t-b0cd334c19bc579ff78e58045d8c8268723493a76902c7623d6c581a1b8a72043</cites><orcidid>0000-0001-5570-0723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393061/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393061/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28356341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01504857$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Filipescu, Dan</creatorcontrib><creatorcontrib>Naughtin, Monica</creatorcontrib><creatorcontrib>Podsypanina, Katrina</creatorcontrib><creatorcontrib>Lejour, Vincent</creatorcontrib><creatorcontrib>Wilson, Laurence</creatorcontrib><creatorcontrib>Gurard-Levin, Zachary A</creatorcontrib><creatorcontrib>Orsi, Guillermo A</creatorcontrib><creatorcontrib>Simeonova, Iva</creatorcontrib><creatorcontrib>Toufektchan, Eleonore</creatorcontrib><creatorcontrib>Attardi, Laura D</creatorcontrib><creatorcontrib>Toledo, Franck</creatorcontrib><creatorcontrib>Almouzni, Geneviève</creatorcontrib><title>Essential role for centromeric factors following p53 loss and oncogenic transformation</title><title>Genes & development</title><addtitle>Genes Dev</addtitle><description>In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the
and
promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.</description><subject>Amino Acid Motifs - genetics</subject><subject>Animals</subject><subject>Autoantigens - genetics</subject><subject>Autoantigens - metabolism</subject><subject>Cell Line</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cells, Cultured</subject><subject>Centromere - metabolism</subject><subject>Centromere Protein A</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Chromosome Segregation - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Female</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes, p53 - genetics</subject><subject>Genomic Instability - genetics</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C57BL</subject><subject>Models, Animal</subject><subject>Oncogenes - genetics</subject><subject>Research Paper</subject><issn>0890-9369</issn><issn>1549-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtPGzEUhS3UCsJjyxLNsiwmvX7bGySEoCBF6qbt1nI8njDIYwd7QsW_r9MAAlbWPf7O8eMgdIphjjHg7yvbzYkGTVidxR6aYc50y5mUX9AMlIZWU6EP0GEpDwAgQIh9dEAU5YIyPEN_rkvxcRpsaHIKvulTblwVchp9HlzTWzelXKoeQvo7xFWz5rQJqZTGxq5J0aWVjxWcso2lukc7DSkeo6-9DcWfvKxH6PfN9a-r23bx88fd1eWidZzQqV2C6yhlDuul41L3vVSeK2C8U04RoSShTFMrhQbipCC0E44rbPFSWUmA0SN0sctdb5aj7_7f3AazzsNo87NJdjAfd-Jwb1bpyXCqKQhcA853AfefbLeXC7PVAHNgisunLfvt5bCcHje-TGYcivMh2OjTphistKQSmBQVne9Ql-tXZd-_ZWMw2-JMLc7siqvz1nD2_iFv-GtT9B_qK5Qq</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Filipescu, Dan</creator><creator>Naughtin, Monica</creator><creator>Podsypanina, Katrina</creator><creator>Lejour, Vincent</creator><creator>Wilson, Laurence</creator><creator>Gurard-Levin, Zachary A</creator><creator>Orsi, Guillermo A</creator><creator>Simeonova, Iva</creator><creator>Toufektchan, Eleonore</creator><creator>Attardi, Laura D</creator><creator>Toledo, Franck</creator><creator>Almouzni, Geneviève</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7TO</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5570-0723</orcidid></search><sort><creationdate>20170301</creationdate><title>Essential role for centromeric factors following p53 loss and oncogenic transformation</title><author>Filipescu, Dan ; Naughtin, Monica ; Podsypanina, Katrina ; Lejour, Vincent ; Wilson, Laurence ; Gurard-Levin, Zachary A ; Orsi, Guillermo A ; Simeonova, Iva ; Toufektchan, Eleonore ; Attardi, Laura D ; Toledo, Franck ; Almouzni, Geneviève</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-b0cd334c19bc579ff78e58045d8c8268723493a76902c7623d6c581a1b8a72043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs - genetics</topic><topic>Animals</topic><topic>Autoantigens - genetics</topic><topic>Autoantigens - metabolism</topic><topic>Cell Line</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cells, Cultured</topic><topic>Centromere - metabolism</topic><topic>Centromere Protein A</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Chromosome Segregation - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Female</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes, p53 - genetics</topic><topic>Genomic Instability - genetics</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C57BL</topic><topic>Models, Animal</topic><topic>Oncogenes - genetics</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filipescu, Dan</creatorcontrib><creatorcontrib>Naughtin, Monica</creatorcontrib><creatorcontrib>Podsypanina, Katrina</creatorcontrib><creatorcontrib>Lejour, Vincent</creatorcontrib><creatorcontrib>Wilson, Laurence</creatorcontrib><creatorcontrib>Gurard-Levin, Zachary A</creatorcontrib><creatorcontrib>Orsi, Guillermo A</creatorcontrib><creatorcontrib>Simeonova, Iva</creatorcontrib><creatorcontrib>Toufektchan, Eleonore</creatorcontrib><creatorcontrib>Attardi, Laura D</creatorcontrib><creatorcontrib>Toledo, Franck</creatorcontrib><creatorcontrib>Almouzni, Geneviève</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes & development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filipescu, Dan</au><au>Naughtin, Monica</au><au>Podsypanina, Katrina</au><au>Lejour, Vincent</au><au>Wilson, Laurence</au><au>Gurard-Levin, Zachary A</au><au>Orsi, Guillermo A</au><au>Simeonova, Iva</au><au>Toufektchan, Eleonore</au><au>Attardi, Laura D</au><au>Toledo, Franck</au><au>Almouzni, Geneviève</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential role for centromeric factors following p53 loss and oncogenic transformation</atitle><jtitle>Genes & development</jtitle><addtitle>Genes Dev</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>31</volume><issue>5</issue><spage>463</spage><epage>480</epage><pages>463-480</pages><issn>0890-9369</issn><eissn>1549-5477</eissn><abstract>In mammals, centromere definition involves the histone variant CENP-A (centromere protein A), deposited by its chaperone, HJURP (Holliday junction recognition protein). Alterations in this process impair chromosome segregation and genome stability, which are also compromised by p53 inactivation in cancer. Here we found that CENP-A and HJURP are transcriptionally up-regulated in p53-null human tumors. Using an established mouse embryonic fibroblast (MEF) model combining p53 inactivation with E1A or HRas-V12 oncogene expression, we reproduced a similar up-regulation of HJURP and CENP-A. We delineate functional CDE/CHR motifs within the
and
promoters and demonstrate their roles in p53-mediated repression. To assess the importance of HJURP up-regulation in transformed murine and human cells, we used a CRISPR/Cas9 approach. Remarkably, depletion of HJURP leads to distinct outcomes depending on their p53 status. Functional p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest enables the loss of HJURP to induce severe aneuploidy and, ultimately, apoptotic cell death. We thus tested the impact of HJURP depletion in pre-established allograft tumors in mice and revealed a major block of tumor progression in vivo. We discuss a model in which an "epigenetic addiction" to the HJURP chaperone represents an Achilles' heel in p53-deficient transformed cells.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>28356341</pmid><doi>10.1101/gad.290924.116</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5570-0723</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-9369 |
ispartof | Genes & development, 2017-03, Vol.31 (5), p.463-480 |
issn | 0890-9369 1549-5477 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5393061 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amino Acid Motifs - genetics Animals Autoantigens - genetics Autoantigens - metabolism Cell Line Cell Transformation, Neoplastic - genetics Cells, Cultured Centromere - metabolism Centromere Protein A Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism Chromosome Segregation - genetics DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Female Gene Deletion Gene Expression Regulation, Neoplastic Genes, p53 - genetics Genomic Instability - genetics Human health and pathology Humans Life Sciences Mice Mice, Inbred BALB C Mice, Inbred C57BL Models, Animal Oncogenes - genetics Research Paper |
title | Essential role for centromeric factors following p53 loss and oncogenic transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20role%20for%20centromeric%20factors%20following%20p53%20loss%20and%20oncogenic%20transformation&rft.jtitle=Genes%20&%20development&rft.au=Filipescu,%20Dan&rft.date=2017-03-01&rft.volume=31&rft.issue=5&rft.spage=463&rft.epage=480&rft.pages=463-480&rft.issn=0890-9369&rft.eissn=1549-5477&rft_id=info:doi/10.1101/gad.290924.116&rft_dat=%3Cproquest_pubme%3E1897370476%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1897370476&rft_id=info:pmid/28356341&rfr_iscdi=true |