QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments
Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2017-04, Vol.45 (6), p.e44-e44 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e44 |
---|---|
container_issue | 6 |
container_start_page | e44 |
container_title | Nucleic acids research |
container_volume | 45 |
creator | Lienhard, Matthias Grasse, Sabrina Rolff, Jana Frese, Steffen Schirmer, Uwe Becker, Michael Börno, Stefan Timmermann, Bernd Chavez, Lukas Sültmann, Holger Leschber, Gunda Fichtner, Iduna Schweiger, Michal R Herwig, Ralf |
description | Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea). |
doi_str_mv | 10.1093/nar/gkw1193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5389680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845832019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-d292a96135ca1c031b0d7bbdf89257d9ef716b45a940c11b6b1543cb610930e53</originalsourceid><addsrcrecordid>eNpVUUtLAzEQDqLYWj15lz0KsprZ7CsXodT6gKKI9Ryy2dl2dTepydbHvzeLtehpBubjm-9ByDHQc6CcXWhpLxavHwCc7ZAhsDQKY55Gu2RIGU1CoHE-IAfOvVAKMSTxPhlEGQeWRXxI5o9P03HYmhKbptaLwFTBArVpMfyoSwyu7sdBi93yq5FdbXRQWdMGDt_WqFUPR21rtWxRdwF-rtDW_eoOyV4lG4dHmzkiz9fT-eQ2nD3c3E3Gs1CxHLqwjHgkeQosURIUZVDQMiuKssp5lGQlxyqDtIgTyWOqAIq08OqZKtLeNsWEjcjlD-9qXbRYKv_bykasvAxpv4SRtfh_0fVSLMy7SFjO05x6gtMNgTXek-tEWzvlo5AazdoJyOMkZxH10Y7I2Q9UWeOcxWr7BqjoBQnfg9j04NEnf5Vtsb_Bs2_B0oYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845832019</pqid></control><display><type>article</type><title>QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lienhard, Matthias ; Grasse, Sabrina ; Rolff, Jana ; Frese, Steffen ; Schirmer, Uwe ; Becker, Michael ; Börno, Stefan ; Timmermann, Bernd ; Chavez, Lukas ; Sültmann, Holger ; Leschber, Gunda ; Fichtner, Iduna ; Schweiger, Michal R ; Herwig, Ralf</creator><creatorcontrib>Lienhard, Matthias ; Grasse, Sabrina ; Rolff, Jana ; Frese, Steffen ; Schirmer, Uwe ; Becker, Michael ; Börno, Stefan ; Timmermann, Bernd ; Chavez, Lukas ; Sültmann, Holger ; Leschber, Gunda ; Fichtner, Iduna ; Schweiger, Michal R ; Herwig, Ralf</creatorcontrib><description>Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkw1193</identifier><identifier>PMID: 27913729</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Bayes Theorem ; DNA Methylation ; Gene Expression Regulation ; Genomics - methods ; Humans ; Lung Neoplasms - genetics ; Methods Online ; Mice ; Promoter Regions, Genetic ; Sequence Analysis, DNA - methods ; Sulfites ; Workflow</subject><ispartof>Nucleic acids research, 2017-04, Vol.45 (6), p.e44-e44</ispartof><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-d292a96135ca1c031b0d7bbdf89257d9ef716b45a940c11b6b1543cb610930e53</citedby><cites>FETCH-LOGICAL-c381t-d292a96135ca1c031b0d7bbdf89257d9ef716b45a940c11b6b1543cb610930e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389680/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389680/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27913729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lienhard, Matthias</creatorcontrib><creatorcontrib>Grasse, Sabrina</creatorcontrib><creatorcontrib>Rolff, Jana</creatorcontrib><creatorcontrib>Frese, Steffen</creatorcontrib><creatorcontrib>Schirmer, Uwe</creatorcontrib><creatorcontrib>Becker, Michael</creatorcontrib><creatorcontrib>Börno, Stefan</creatorcontrib><creatorcontrib>Timmermann, Bernd</creatorcontrib><creatorcontrib>Chavez, Lukas</creatorcontrib><creatorcontrib>Sültmann, Holger</creatorcontrib><creatorcontrib>Leschber, Gunda</creatorcontrib><creatorcontrib>Fichtner, Iduna</creatorcontrib><creatorcontrib>Schweiger, Michal R</creatorcontrib><creatorcontrib>Herwig, Ralf</creatorcontrib><title>QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>DNA Methylation</subject><subject>Gene Expression Regulation</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Lung Neoplasms - genetics</subject><subject>Methods Online</subject><subject>Mice</subject><subject>Promoter Regions, Genetic</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Sulfites</subject><subject>Workflow</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtLAzEQDqLYWj15lz0KsprZ7CsXodT6gKKI9Ryy2dl2dTepydbHvzeLtehpBubjm-9ByDHQc6CcXWhpLxavHwCc7ZAhsDQKY55Gu2RIGU1CoHE-IAfOvVAKMSTxPhlEGQeWRXxI5o9P03HYmhKbptaLwFTBArVpMfyoSwyu7sdBi93yq5FdbXRQWdMGDt_WqFUPR21rtWxRdwF-rtDW_eoOyV4lG4dHmzkiz9fT-eQ2nD3c3E3Gs1CxHLqwjHgkeQosURIUZVDQMiuKssp5lGQlxyqDtIgTyWOqAIq08OqZKtLeNsWEjcjlD-9qXbRYKv_bykasvAxpv4SRtfh_0fVSLMy7SFjO05x6gtMNgTXek-tEWzvlo5AazdoJyOMkZxH10Y7I2Q9UWeOcxWr7BqjoBQnfg9j04NEnf5Vtsb_Bs2_B0oYU</recordid><startdate>20170407</startdate><enddate>20170407</enddate><creator>Lienhard, Matthias</creator><creator>Grasse, Sabrina</creator><creator>Rolff, Jana</creator><creator>Frese, Steffen</creator><creator>Schirmer, Uwe</creator><creator>Becker, Michael</creator><creator>Börno, Stefan</creator><creator>Timmermann, Bernd</creator><creator>Chavez, Lukas</creator><creator>Sültmann, Holger</creator><creator>Leschber, Gunda</creator><creator>Fichtner, Iduna</creator><creator>Schweiger, Michal R</creator><creator>Herwig, Ralf</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170407</creationdate><title>QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments</title><author>Lienhard, Matthias ; Grasse, Sabrina ; Rolff, Jana ; Frese, Steffen ; Schirmer, Uwe ; Becker, Michael ; Börno, Stefan ; Timmermann, Bernd ; Chavez, Lukas ; Sültmann, Holger ; Leschber, Gunda ; Fichtner, Iduna ; Schweiger, Michal R ; Herwig, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-d292a96135ca1c031b0d7bbdf89257d9ef716b45a940c11b6b1543cb610930e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>DNA Methylation</topic><topic>Gene Expression Regulation</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Lung Neoplasms - genetics</topic><topic>Methods Online</topic><topic>Mice</topic><topic>Promoter Regions, Genetic</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Sulfites</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lienhard, Matthias</creatorcontrib><creatorcontrib>Grasse, Sabrina</creatorcontrib><creatorcontrib>Rolff, Jana</creatorcontrib><creatorcontrib>Frese, Steffen</creatorcontrib><creatorcontrib>Schirmer, Uwe</creatorcontrib><creatorcontrib>Becker, Michael</creatorcontrib><creatorcontrib>Börno, Stefan</creatorcontrib><creatorcontrib>Timmermann, Bernd</creatorcontrib><creatorcontrib>Chavez, Lukas</creatorcontrib><creatorcontrib>Sültmann, Holger</creatorcontrib><creatorcontrib>Leschber, Gunda</creatorcontrib><creatorcontrib>Fichtner, Iduna</creatorcontrib><creatorcontrib>Schweiger, Michal R</creatorcontrib><creatorcontrib>Herwig, Ralf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lienhard, Matthias</au><au>Grasse, Sabrina</au><au>Rolff, Jana</au><au>Frese, Steffen</au><au>Schirmer, Uwe</au><au>Becker, Michael</au><au>Börno, Stefan</au><au>Timmermann, Bernd</au><au>Chavez, Lukas</au><au>Sültmann, Holger</au><au>Leschber, Gunda</au><au>Fichtner, Iduna</au><au>Schweiger, Michal R</au><au>Herwig, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2017-04-07</date><risdate>2017</risdate><volume>45</volume><issue>6</issue><spage>e44</spage><epage>e44</epage><pages>e44-e44</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27913729</pmid><doi>10.1093/nar/gkw1193</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2017-04, Vol.45 (6), p.e44-e44 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5389680 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Bayes Theorem DNA Methylation Gene Expression Regulation Genomics - methods Humans Lung Neoplasms - genetics Methods Online Mice Promoter Regions, Genetic Sequence Analysis, DNA - methods Sulfites Workflow |
title | QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QSEA-modelling%20of%20genome-wide%20DNA%20methylation%20from%20sequencing%20enrichment%20experiments&rft.jtitle=Nucleic%20acids%20research&rft.au=Lienhard,%20Matthias&rft.date=2017-04-07&rft.volume=45&rft.issue=6&rft.spage=e44&rft.epage=e44&rft.pages=e44-e44&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkw1193&rft_dat=%3Cproquest_pubme%3E1845832019%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845832019&rft_id=info:pmid/27913729&rfr_iscdi=true |