QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments

Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2017-04, Vol.45 (6), p.e44-e44
Hauptverfasser: Lienhard, Matthias, Grasse, Sabrina, Rolff, Jana, Frese, Steffen, Schirmer, Uwe, Becker, Michael, Börno, Stefan, Timmermann, Bernd, Chavez, Lukas, Sültmann, Holger, Leschber, Gunda, Fichtner, Iduna, Schweiger, Michal R, Herwig, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e44
container_issue 6
container_start_page e44
container_title Nucleic acids research
container_volume 45
creator Lienhard, Matthias
Grasse, Sabrina
Rolff, Jana
Frese, Steffen
Schirmer, Uwe
Becker, Michael
Börno, Stefan
Timmermann, Bernd
Chavez, Lukas
Sültmann, Holger
Leschber, Gunda
Fichtner, Iduna
Schweiger, Michal R
Herwig, Ralf
description Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).
doi_str_mv 10.1093/nar/gkw1193
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5389680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845832019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-d292a96135ca1c031b0d7bbdf89257d9ef716b45a940c11b6b1543cb610930e53</originalsourceid><addsrcrecordid>eNpVUUtLAzEQDqLYWj15lz0KsprZ7CsXodT6gKKI9Ryy2dl2dTepydbHvzeLtehpBubjm-9ByDHQc6CcXWhpLxavHwCc7ZAhsDQKY55Gu2RIGU1CoHE-IAfOvVAKMSTxPhlEGQeWRXxI5o9P03HYmhKbptaLwFTBArVpMfyoSwyu7sdBi93yq5FdbXRQWdMGDt_WqFUPR21rtWxRdwF-rtDW_eoOyV4lG4dHmzkiz9fT-eQ2nD3c3E3Gs1CxHLqwjHgkeQosURIUZVDQMiuKssp5lGQlxyqDtIgTyWOqAIq08OqZKtLeNsWEjcjlD-9qXbRYKv_bykasvAxpv4SRtfh_0fVSLMy7SFjO05x6gtMNgTXek-tEWzvlo5AazdoJyOMkZxH10Y7I2Q9UWeOcxWr7BqjoBQnfg9j04NEnf5Vtsb_Bs2_B0oYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845832019</pqid></control><display><type>article</type><title>QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lienhard, Matthias ; Grasse, Sabrina ; Rolff, Jana ; Frese, Steffen ; Schirmer, Uwe ; Becker, Michael ; Börno, Stefan ; Timmermann, Bernd ; Chavez, Lukas ; Sültmann, Holger ; Leschber, Gunda ; Fichtner, Iduna ; Schweiger, Michal R ; Herwig, Ralf</creator><creatorcontrib>Lienhard, Matthias ; Grasse, Sabrina ; Rolff, Jana ; Frese, Steffen ; Schirmer, Uwe ; Becker, Michael ; Börno, Stefan ; Timmermann, Bernd ; Chavez, Lukas ; Sültmann, Holger ; Leschber, Gunda ; Fichtner, Iduna ; Schweiger, Michal R ; Herwig, Ralf</creatorcontrib><description>Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkw1193</identifier><identifier>PMID: 27913729</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Bayes Theorem ; DNA Methylation ; Gene Expression Regulation ; Genomics - methods ; Humans ; Lung Neoplasms - genetics ; Methods Online ; Mice ; Promoter Regions, Genetic ; Sequence Analysis, DNA - methods ; Sulfites ; Workflow</subject><ispartof>Nucleic acids research, 2017-04, Vol.45 (6), p.e44-e44</ispartof><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-d292a96135ca1c031b0d7bbdf89257d9ef716b45a940c11b6b1543cb610930e53</citedby><cites>FETCH-LOGICAL-c381t-d292a96135ca1c031b0d7bbdf89257d9ef716b45a940c11b6b1543cb610930e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389680/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389680/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27913729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lienhard, Matthias</creatorcontrib><creatorcontrib>Grasse, Sabrina</creatorcontrib><creatorcontrib>Rolff, Jana</creatorcontrib><creatorcontrib>Frese, Steffen</creatorcontrib><creatorcontrib>Schirmer, Uwe</creatorcontrib><creatorcontrib>Becker, Michael</creatorcontrib><creatorcontrib>Börno, Stefan</creatorcontrib><creatorcontrib>Timmermann, Bernd</creatorcontrib><creatorcontrib>Chavez, Lukas</creatorcontrib><creatorcontrib>Sültmann, Holger</creatorcontrib><creatorcontrib>Leschber, Gunda</creatorcontrib><creatorcontrib>Fichtner, Iduna</creatorcontrib><creatorcontrib>Schweiger, Michal R</creatorcontrib><creatorcontrib>Herwig, Ralf</creatorcontrib><title>QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>DNA Methylation</subject><subject>Gene Expression Regulation</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Lung Neoplasms - genetics</subject><subject>Methods Online</subject><subject>Mice</subject><subject>Promoter Regions, Genetic</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Sulfites</subject><subject>Workflow</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtLAzEQDqLYWj15lz0KsprZ7CsXodT6gKKI9Ryy2dl2dTepydbHvzeLtehpBubjm-9ByDHQc6CcXWhpLxavHwCc7ZAhsDQKY55Gu2RIGU1CoHE-IAfOvVAKMSTxPhlEGQeWRXxI5o9P03HYmhKbptaLwFTBArVpMfyoSwyu7sdBi93yq5FdbXRQWdMGDt_WqFUPR21rtWxRdwF-rtDW_eoOyV4lG4dHmzkiz9fT-eQ2nD3c3E3Gs1CxHLqwjHgkeQosURIUZVDQMiuKssp5lGQlxyqDtIgTyWOqAIq08OqZKtLeNsWEjcjlD-9qXbRYKv_bykasvAxpv4SRtfh_0fVSLMy7SFjO05x6gtMNgTXek-tEWzvlo5AazdoJyOMkZxH10Y7I2Q9UWeOcxWr7BqjoBQnfg9j04NEnf5Vtsb_Bs2_B0oYU</recordid><startdate>20170407</startdate><enddate>20170407</enddate><creator>Lienhard, Matthias</creator><creator>Grasse, Sabrina</creator><creator>Rolff, Jana</creator><creator>Frese, Steffen</creator><creator>Schirmer, Uwe</creator><creator>Becker, Michael</creator><creator>Börno, Stefan</creator><creator>Timmermann, Bernd</creator><creator>Chavez, Lukas</creator><creator>Sültmann, Holger</creator><creator>Leschber, Gunda</creator><creator>Fichtner, Iduna</creator><creator>Schweiger, Michal R</creator><creator>Herwig, Ralf</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170407</creationdate><title>QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments</title><author>Lienhard, Matthias ; Grasse, Sabrina ; Rolff, Jana ; Frese, Steffen ; Schirmer, Uwe ; Becker, Michael ; Börno, Stefan ; Timmermann, Bernd ; Chavez, Lukas ; Sültmann, Holger ; Leschber, Gunda ; Fichtner, Iduna ; Schweiger, Michal R ; Herwig, Ralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-d292a96135ca1c031b0d7bbdf89257d9ef716b45a940c11b6b1543cb610930e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>DNA Methylation</topic><topic>Gene Expression Regulation</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Lung Neoplasms - genetics</topic><topic>Methods Online</topic><topic>Mice</topic><topic>Promoter Regions, Genetic</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Sulfites</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lienhard, Matthias</creatorcontrib><creatorcontrib>Grasse, Sabrina</creatorcontrib><creatorcontrib>Rolff, Jana</creatorcontrib><creatorcontrib>Frese, Steffen</creatorcontrib><creatorcontrib>Schirmer, Uwe</creatorcontrib><creatorcontrib>Becker, Michael</creatorcontrib><creatorcontrib>Börno, Stefan</creatorcontrib><creatorcontrib>Timmermann, Bernd</creatorcontrib><creatorcontrib>Chavez, Lukas</creatorcontrib><creatorcontrib>Sültmann, Holger</creatorcontrib><creatorcontrib>Leschber, Gunda</creatorcontrib><creatorcontrib>Fichtner, Iduna</creatorcontrib><creatorcontrib>Schweiger, Michal R</creatorcontrib><creatorcontrib>Herwig, Ralf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lienhard, Matthias</au><au>Grasse, Sabrina</au><au>Rolff, Jana</au><au>Frese, Steffen</au><au>Schirmer, Uwe</au><au>Becker, Michael</au><au>Börno, Stefan</au><au>Timmermann, Bernd</au><au>Chavez, Lukas</au><au>Sültmann, Holger</au><au>Leschber, Gunda</au><au>Fichtner, Iduna</au><au>Schweiger, Michal R</au><au>Herwig, Ralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2017-04-07</date><risdate>2017</risdate><volume>45</volume><issue>6</issue><spage>e44</spage><epage>e44</epage><pages>e44-e44</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Genome-wide enrichment of methylated DNA followed by sequencing (MeDIP-seq) offers a reasonable compromise between experimental costs and genomic coverage. However, the computational analysis of these experiments is complex, and quantification of the enrichment signals in terms of absolute levels of methylation requires specific transformation. In this work, we present QSEA, Quantitative Sequence Enrichment Analysis, a comprehensive workflow for the modelling and subsequent quantification of MeDIP-seq data. As the central part of the workflow we have developed a Bayesian statistical model that transforms the enrichment read counts to absolute levels of methylation and, thus, enhances interpretability and facilitates comparison with other methylation assays. We suggest several calibration strategies for the critical parameters of the model, either using additional data or fairly general assumptions. By comparing the results with bisulfite sequencing (BS) validation data, we show the improvement of QSEA over existing methods. Additionally, we generated a clinically relevant benchmark data set consisting of methylation enrichment experiments (MeDIP-seq), BS-based validation experiments (Methyl-seq) as well as gene expression experiments (RNA-seq) derived from non-small cell lung cancer patients, and show that the workflow retrieves well-known lung tumour methylation markers that are causative for gene expression changes, demonstrating the applicability of QSEA for clinical studies. QSEA is implemented in R and available from the Bioconductor repository 3.4 (www.bioconductor.org/packages/qsea).</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27913729</pmid><doi>10.1093/nar/gkw1193</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2017-04, Vol.45 (6), p.e44-e44
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5389680
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Bayes Theorem
DNA Methylation
Gene Expression Regulation
Genomics - methods
Humans
Lung Neoplasms - genetics
Methods Online
Mice
Promoter Regions, Genetic
Sequence Analysis, DNA - methods
Sulfites
Workflow
title QSEA-modelling of genome-wide DNA methylation from sequencing enrichment experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QSEA-modelling%20of%20genome-wide%20DNA%20methylation%20from%20sequencing%20enrichment%20experiments&rft.jtitle=Nucleic%20acids%20research&rft.au=Lienhard,%20Matthias&rft.date=2017-04-07&rft.volume=45&rft.issue=6&rft.spage=e44&rft.epage=e44&rft.pages=e44-e44&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkw1193&rft_dat=%3Cproquest_pubme%3E1845832019%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845832019&rft_id=info:pmid/27913729&rfr_iscdi=true