RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function

Necroptosis is an inflammatory form of programmed cell death requiring receptor-interacting protein kinase 1, 3 (RIPK1, RIPK3) and mixed lineage kinase domain-like protein (MLKL). The kinase of RIPK3 phosphorylates MLKL causing MLKL to form a pore-like structure, allowing intracellular contents to r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2017-02, Vol.8 (2), p.e2588-e2588
Hauptverfasser: Hänggi, Kay, Vasilikos, Lazaros, Valls, Aida Freire, Yerbes, Rosario, Knop, Janin, Spilgies, Lisanne M, Rieck, Kristy, Misra, Tvisha, Bertin, John, Gough, Peter J, Schmidt, Thomas, de Almodòvar, Carmen Ruiz, Wong, W Wei-Lynn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Necroptosis is an inflammatory form of programmed cell death requiring receptor-interacting protein kinase 1, 3 (RIPK1, RIPK3) and mixed lineage kinase domain-like protein (MLKL). The kinase of RIPK3 phosphorylates MLKL causing MLKL to form a pore-like structure, allowing intracellular contents to release and cell death to occur. Alternatively, RIPK1 and RIPK3 have been shown to regulate cytokine production directly influencing inflammatory immune infiltrates. Recent data suggest that necroptosis may contribute to the malignant transformation of tumor cells in vivo and we asked whether necroptosis may have a role in the tumor microenvironment altering the ability of the tumor to grow or metastasize. To determine if necroptosis in the tumor microenvironment could promote inflammation alone or by initiating necroptosis and thereby influencing growth or metastasis of tumors, we utilized a syngeneic tumor model of metastasis. Loss of RIPK3 in the tumor microenvironment reduced the number of tumor nodules in the lung by 46%. Loss of the kinase activity in RIPK1, a member of the necrosome also reduced tumor nodules in the lung by 38%. However, the loss of kinase activity in RIPK3 or the loss of MLKL only marginally altered the ability of tumor cells to form in the lung. Using bone marrow chimeras, the decrease in tumor nodules in the Ripk3 −/− appeared to be due to the stromal compartment rather than the hematopoietic compartment. Transmigration assays showed decreased ability of tumor cells to transmigrate through the vascular endothelial layer, which correlated with decreased permeability in the Ripk3 −/− mice after tumor injection. In response to permeability factors, such as vascular endothelial growth factor, RIPK3 null endothelial cells showed decreased p38/HSP27 activation. Taken together, our results suggest an alternative function for RIPK1/RIPK3 in vascular permeability leading to decreased number of metastasis.
ISSN:2041-4889
2041-4889
DOI:10.1038/cddis.2017.20