Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity

Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA-sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ∼...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stem cell 2017-04, Vol.20 (4), p.518-532.e9
Hauptverfasser: Carcamo-Orive, Ivan, Hoffman, Gabriel E., Cundiff, Paige, Beckmann, Noam D., D’Souza, Sunita L., Knowles, Joshua W., Patel, Achchhe, Papatsenko, Dimitri, Abbasi, Fahim, Reaven, Gerald M., Whalen, Sean, Lee, Philip, Shahbazi, Mohammad, Henrion, Marc Y.R., Zhu, Kuixi, Wang, Sven, Roussos, Panos, Schadt, Eric E., Pandey, Gaurav, Chang, Rui, Quertermous, Thomas, Lemischka, Ihor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532.e9
container_issue 4
container_start_page 518
container_title Cell stem cell
container_volume 20
creator Carcamo-Orive, Ivan
Hoffman, Gabriel E.
Cundiff, Paige
Beckmann, Noam D.
D’Souza, Sunita L.
Knowles, Joshua W.
Patel, Achchhe
Papatsenko, Dimitri
Abbasi, Fahim
Reaven, Gerald M.
Whalen, Sean
Lee, Philip
Shahbazi, Mohammad
Henrion, Marc Y.R.
Zhu, Kuixi
Wang, Sven
Roussos, Panos
Schadt, Eric E.
Pandey, Gaurav
Chang, Rui
Quertermous, Thomas
Lemischka, Ihor
description Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA-sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ∼50% of genome-wide expression variability is explained by variation across individuals and identified a set of expression quantitative trait loci that contribute to this variation. These analyses coupled with allele-specific expression show that iPSCs retain a donor-specific gene expression pattern. Network, pathway, and key driver analyses showed that Polycomb targets contribute significantly to the non-genetic variability seen within and across individuals, highlighting this chromatin regulator as a likely source of reprogramming-based variability. Our findings therefore shed light on variation between iPSC lines and illustrate the potential for our dataset and other similar large-scale analyses to identify underlying drivers relevant to iPSC applications. [Display omitted] •Gene expression analysis characterizes 317 human iPSC lines from 101 individuals•eQTLs contribute significantly to a cross individual variation in iPSC lines•Polycomb target genes are a significant source of non-genetic variation•Predictive networks highlight candidate key drivers of differentiation efficiency Using large-scale analyses of over 300 iPSC lines, Chang, Quertermous, Lemischka, and colleagues of the NHLBI NextGen consortium examine sources of gene expression variation between lines and illustrate how this approach can identify genetic and non-genetic drivers relevant to line variation with implications for iPSC characterization and disease modeling.
doi_str_mv 10.1016/j.stem.2016.11.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5384872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590916304015</els_id><sourcerecordid>1853354582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-bc9480e493e103dcf437d1cd2e4cbd2c4027d73ab30f65974af4d75771a9db2d3</originalsourceid><addsrcrecordid>eNp9UU2P0zAQjRCIXRb-AAfkI5cEf9aJhJBWBbZIFSBYuFqOPSmuErtru5V65o_j0LKCCyfPx3tvZvyq6jnBDcFk8WrbpAxTQ0vcENJgLB5Ul6SVou6klA9L3DFeiw53F9WTlLYFIAmWj6sL2mIiZbe4rH5eez0ek0soDOg2ap9MdLvsQimj7zo63bvR5SNyHmm01nEDaLWftEfu89clWrs-6nhEX-AAekzoBjxkZ5D2Fn0Mvt6c87eQIU7Oa59_T1rNeZi7Rftp9WgoZHh2fq-qb-_f3S5X9frTzYfl9bo2gpJc96bjLQbeMSCYWTNwJi0xlgI3vaWGYyqtZLpneFiITnI9cCuFlER3tqeWXVVvTrq7fT-BNeBz1KPaRTeVG1TQTv3b8e6H2oSDEqzlraRF4OVZIIa7PaSsJpcMjKP2EPZJkVYwJrhoZyg9QU0MKUUY7scQrGb31FbN7qnZPUWIKuYU0ou_F7yn_LGrAF6fAFC-6eAgqmQceAPWRTBZ2eD-p_8L0SKvDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1853354582</pqid></control><display><type>article</type><title>Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Carcamo-Orive, Ivan ; Hoffman, Gabriel E. ; Cundiff, Paige ; Beckmann, Noam D. ; D’Souza, Sunita L. ; Knowles, Joshua W. ; Patel, Achchhe ; Papatsenko, Dimitri ; Abbasi, Fahim ; Reaven, Gerald M. ; Whalen, Sean ; Lee, Philip ; Shahbazi, Mohammad ; Henrion, Marc Y.R. ; Zhu, Kuixi ; Wang, Sven ; Roussos, Panos ; Schadt, Eric E. ; Pandey, Gaurav ; Chang, Rui ; Quertermous, Thomas ; Lemischka, Ihor</creator><creatorcontrib>Carcamo-Orive, Ivan ; Hoffman, Gabriel E. ; Cundiff, Paige ; Beckmann, Noam D. ; D’Souza, Sunita L. ; Knowles, Joshua W. ; Patel, Achchhe ; Papatsenko, Dimitri ; Abbasi, Fahim ; Reaven, Gerald M. ; Whalen, Sean ; Lee, Philip ; Shahbazi, Mohammad ; Henrion, Marc Y.R. ; Zhu, Kuixi ; Wang, Sven ; Roussos, Panos ; Schadt, Eric E. ; Pandey, Gaurav ; Chang, Rui ; Quertermous, Thomas ; Lemischka, Ihor</creatorcontrib><description>Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA-sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ∼50% of genome-wide expression variability is explained by variation across individuals and identified a set of expression quantitative trait loci that contribute to this variation. These analyses coupled with allele-specific expression show that iPSCs retain a donor-specific gene expression pattern. Network, pathway, and key driver analyses showed that Polycomb targets contribute significantly to the non-genetic variability seen within and across individuals, highlighting this chromatin regulator as a likely source of reprogramming-based variability. Our findings therefore shed light on variation between iPSC lines and illustrate the potential for our dataset and other similar large-scale analyses to identify underlying drivers relevant to iPSC applications. [Display omitted] •Gene expression analysis characterizes 317 human iPSC lines from 101 individuals•eQTLs contribute significantly to a cross individual variation in iPSC lines•Polycomb target genes are a significant source of non-genetic variation•Predictive networks highlight candidate key drivers of differentiation efficiency Using large-scale analyses of over 300 iPSC lines, Chang, Quertermous, Lemischka, and colleagues of the NHLBI NextGen consortium examine sources of gene expression variation between lines and illustrate how this approach can identify genetic and non-genetic drivers relevant to line variation with implications for iPSC characterization and disease modeling.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2016.11.005</identifier><identifier>PMID: 28017796</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; allelic imbalance ; Bayes Theorem ; Cell Differentiation - genetics ; Cell Line ; differentiation variability ; eQTL ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Genetic Association Studies ; Genetic Heterogeneity ; Humans ; Induced Pluripotent Stem Cells - metabolism ; iPSC library ; key drivers ; network analysis ; Polycomb targets ; Polycomb-Group Proteins - metabolism ; Quantitative Trait Loci - genetics ; Reproducibility of Results ; Transcription, Genetic ; transcriptional variability ; variance partition</subject><ispartof>Cell stem cell, 2017-04, Vol.20 (4), p.518-532.e9</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-bc9480e493e103dcf437d1cd2e4cbd2c4027d73ab30f65974af4d75771a9db2d3</citedby><cites>FETCH-LOGICAL-c521t-bc9480e493e103dcf437d1cd2e4cbd2c4027d73ab30f65974af4d75771a9db2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1934590916304015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28017796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carcamo-Orive, Ivan</creatorcontrib><creatorcontrib>Hoffman, Gabriel E.</creatorcontrib><creatorcontrib>Cundiff, Paige</creatorcontrib><creatorcontrib>Beckmann, Noam D.</creatorcontrib><creatorcontrib>D’Souza, Sunita L.</creatorcontrib><creatorcontrib>Knowles, Joshua W.</creatorcontrib><creatorcontrib>Patel, Achchhe</creatorcontrib><creatorcontrib>Papatsenko, Dimitri</creatorcontrib><creatorcontrib>Abbasi, Fahim</creatorcontrib><creatorcontrib>Reaven, Gerald M.</creatorcontrib><creatorcontrib>Whalen, Sean</creatorcontrib><creatorcontrib>Lee, Philip</creatorcontrib><creatorcontrib>Shahbazi, Mohammad</creatorcontrib><creatorcontrib>Henrion, Marc Y.R.</creatorcontrib><creatorcontrib>Zhu, Kuixi</creatorcontrib><creatorcontrib>Wang, Sven</creatorcontrib><creatorcontrib>Roussos, Panos</creatorcontrib><creatorcontrib>Schadt, Eric E.</creatorcontrib><creatorcontrib>Pandey, Gaurav</creatorcontrib><creatorcontrib>Chang, Rui</creatorcontrib><creatorcontrib>Quertermous, Thomas</creatorcontrib><creatorcontrib>Lemischka, Ihor</creatorcontrib><title>Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA-sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ∼50% of genome-wide expression variability is explained by variation across individuals and identified a set of expression quantitative trait loci that contribute to this variation. These analyses coupled with allele-specific expression show that iPSCs retain a donor-specific gene expression pattern. Network, pathway, and key driver analyses showed that Polycomb targets contribute significantly to the non-genetic variability seen within and across individuals, highlighting this chromatin regulator as a likely source of reprogramming-based variability. Our findings therefore shed light on variation between iPSC lines and illustrate the potential for our dataset and other similar large-scale analyses to identify underlying drivers relevant to iPSC applications. [Display omitted] •Gene expression analysis characterizes 317 human iPSC lines from 101 individuals•eQTLs contribute significantly to a cross individual variation in iPSC lines•Polycomb target genes are a significant source of non-genetic variation•Predictive networks highlight candidate key drivers of differentiation efficiency Using large-scale analyses of over 300 iPSC lines, Chang, Quertermous, Lemischka, and colleagues of the NHLBI NextGen consortium examine sources of gene expression variation between lines and illustrate how this approach can identify genetic and non-genetic drivers relevant to line variation with implications for iPSC characterization and disease modeling.</description><subject>Alleles</subject><subject>allelic imbalance</subject><subject>Bayes Theorem</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>differentiation variability</subject><subject>eQTL</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Regulatory Networks</subject><subject>Genetic Association Studies</subject><subject>Genetic Heterogeneity</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>iPSC library</subject><subject>key drivers</subject><subject>network analysis</subject><subject>Polycomb targets</subject><subject>Polycomb-Group Proteins - metabolism</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Reproducibility of Results</subject><subject>Transcription, Genetic</subject><subject>transcriptional variability</subject><subject>variance partition</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2P0zAQjRCIXRb-AAfkI5cEf9aJhJBWBbZIFSBYuFqOPSmuErtru5V65o_j0LKCCyfPx3tvZvyq6jnBDcFk8WrbpAxTQ0vcENJgLB5Ul6SVou6klA9L3DFeiw53F9WTlLYFIAmWj6sL2mIiZbe4rH5eez0ek0soDOg2ap9MdLvsQimj7zo63bvR5SNyHmm01nEDaLWftEfu89clWrs-6nhEX-AAekzoBjxkZ5D2Fn0Mvt6c87eQIU7Oa59_T1rNeZi7Rftp9WgoZHh2fq-qb-_f3S5X9frTzYfl9bo2gpJc96bjLQbeMSCYWTNwJi0xlgI3vaWGYyqtZLpneFiITnI9cCuFlER3tqeWXVVvTrq7fT-BNeBz1KPaRTeVG1TQTv3b8e6H2oSDEqzlraRF4OVZIIa7PaSsJpcMjKP2EPZJkVYwJrhoZyg9QU0MKUUY7scQrGb31FbN7qnZPUWIKuYU0ou_F7yn_LGrAF6fAFC-6eAgqmQceAPWRTBZ2eD-p_8L0SKvDw</recordid><startdate>20170406</startdate><enddate>20170406</enddate><creator>Carcamo-Orive, Ivan</creator><creator>Hoffman, Gabriel E.</creator><creator>Cundiff, Paige</creator><creator>Beckmann, Noam D.</creator><creator>D’Souza, Sunita L.</creator><creator>Knowles, Joshua W.</creator><creator>Patel, Achchhe</creator><creator>Papatsenko, Dimitri</creator><creator>Abbasi, Fahim</creator><creator>Reaven, Gerald M.</creator><creator>Whalen, Sean</creator><creator>Lee, Philip</creator><creator>Shahbazi, Mohammad</creator><creator>Henrion, Marc Y.R.</creator><creator>Zhu, Kuixi</creator><creator>Wang, Sven</creator><creator>Roussos, Panos</creator><creator>Schadt, Eric E.</creator><creator>Pandey, Gaurav</creator><creator>Chang, Rui</creator><creator>Quertermous, Thomas</creator><creator>Lemischka, Ihor</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170406</creationdate><title>Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity</title><author>Carcamo-Orive, Ivan ; Hoffman, Gabriel E. ; Cundiff, Paige ; Beckmann, Noam D. ; D’Souza, Sunita L. ; Knowles, Joshua W. ; Patel, Achchhe ; Papatsenko, Dimitri ; Abbasi, Fahim ; Reaven, Gerald M. ; Whalen, Sean ; Lee, Philip ; Shahbazi, Mohammad ; Henrion, Marc Y.R. ; Zhu, Kuixi ; Wang, Sven ; Roussos, Panos ; Schadt, Eric E. ; Pandey, Gaurav ; Chang, Rui ; Quertermous, Thomas ; Lemischka, Ihor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-bc9480e493e103dcf437d1cd2e4cbd2c4027d73ab30f65974af4d75771a9db2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alleles</topic><topic>allelic imbalance</topic><topic>Bayes Theorem</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>differentiation variability</topic><topic>eQTL</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Regulatory Networks</topic><topic>Genetic Association Studies</topic><topic>Genetic Heterogeneity</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>iPSC library</topic><topic>key drivers</topic><topic>network analysis</topic><topic>Polycomb targets</topic><topic>Polycomb-Group Proteins - metabolism</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Reproducibility of Results</topic><topic>Transcription, Genetic</topic><topic>transcriptional variability</topic><topic>variance partition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carcamo-Orive, Ivan</creatorcontrib><creatorcontrib>Hoffman, Gabriel E.</creatorcontrib><creatorcontrib>Cundiff, Paige</creatorcontrib><creatorcontrib>Beckmann, Noam D.</creatorcontrib><creatorcontrib>D’Souza, Sunita L.</creatorcontrib><creatorcontrib>Knowles, Joshua W.</creatorcontrib><creatorcontrib>Patel, Achchhe</creatorcontrib><creatorcontrib>Papatsenko, Dimitri</creatorcontrib><creatorcontrib>Abbasi, Fahim</creatorcontrib><creatorcontrib>Reaven, Gerald M.</creatorcontrib><creatorcontrib>Whalen, Sean</creatorcontrib><creatorcontrib>Lee, Philip</creatorcontrib><creatorcontrib>Shahbazi, Mohammad</creatorcontrib><creatorcontrib>Henrion, Marc Y.R.</creatorcontrib><creatorcontrib>Zhu, Kuixi</creatorcontrib><creatorcontrib>Wang, Sven</creatorcontrib><creatorcontrib>Roussos, Panos</creatorcontrib><creatorcontrib>Schadt, Eric E.</creatorcontrib><creatorcontrib>Pandey, Gaurav</creatorcontrib><creatorcontrib>Chang, Rui</creatorcontrib><creatorcontrib>Quertermous, Thomas</creatorcontrib><creatorcontrib>Lemischka, Ihor</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carcamo-Orive, Ivan</au><au>Hoffman, Gabriel E.</au><au>Cundiff, Paige</au><au>Beckmann, Noam D.</au><au>D’Souza, Sunita L.</au><au>Knowles, Joshua W.</au><au>Patel, Achchhe</au><au>Papatsenko, Dimitri</au><au>Abbasi, Fahim</au><au>Reaven, Gerald M.</au><au>Whalen, Sean</au><au>Lee, Philip</au><au>Shahbazi, Mohammad</au><au>Henrion, Marc Y.R.</au><au>Zhu, Kuixi</au><au>Wang, Sven</au><au>Roussos, Panos</au><au>Schadt, Eric E.</au><au>Pandey, Gaurav</au><au>Chang, Rui</au><au>Quertermous, Thomas</au><au>Lemischka, Ihor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2017-04-06</date><risdate>2017</risdate><volume>20</volume><issue>4</issue><spage>518</spage><epage>532.e9</epage><pages>518-532.e9</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA-sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ∼50% of genome-wide expression variability is explained by variation across individuals and identified a set of expression quantitative trait loci that contribute to this variation. These analyses coupled with allele-specific expression show that iPSCs retain a donor-specific gene expression pattern. Network, pathway, and key driver analyses showed that Polycomb targets contribute significantly to the non-genetic variability seen within and across individuals, highlighting this chromatin regulator as a likely source of reprogramming-based variability. Our findings therefore shed light on variation between iPSC lines and illustrate the potential for our dataset and other similar large-scale analyses to identify underlying drivers relevant to iPSC applications. [Display omitted] •Gene expression analysis characterizes 317 human iPSC lines from 101 individuals•eQTLs contribute significantly to a cross individual variation in iPSC lines•Polycomb target genes are a significant source of non-genetic variation•Predictive networks highlight candidate key drivers of differentiation efficiency Using large-scale analyses of over 300 iPSC lines, Chang, Quertermous, Lemischka, and colleagues of the NHLBI NextGen consortium examine sources of gene expression variation between lines and illustrate how this approach can identify genetic and non-genetic drivers relevant to line variation with implications for iPSC characterization and disease modeling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28017796</pmid><doi>10.1016/j.stem.2016.11.005</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2017-04, Vol.20 (4), p.518-532.e9
issn 1934-5909
1875-9777
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5384872
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Alleles
allelic imbalance
Bayes Theorem
Cell Differentiation - genetics
Cell Line
differentiation variability
eQTL
Gene Expression Regulation, Developmental
Gene Regulatory Networks
Genetic Association Studies
Genetic Heterogeneity
Humans
Induced Pluripotent Stem Cells - metabolism
iPSC library
key drivers
network analysis
Polycomb targets
Polycomb-Group Proteins - metabolism
Quantitative Trait Loci - genetics
Reproducibility of Results
Transcription, Genetic
transcriptional variability
variance partition
title Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A17%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Transcriptional%20Variability%20in%20a%20Large%20Human%20iPSC%20Library%20Reveals%20Genetic%20and%20Non-genetic%20Determinants%20of%20Heterogeneity&rft.jtitle=Cell%20stem%20cell&rft.au=Carcamo-Orive,%20Ivan&rft.date=2017-04-06&rft.volume=20&rft.issue=4&rft.spage=518&rft.epage=532.e9&rft.pages=518-532.e9&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2016.11.005&rft_dat=%3Cproquest_pubme%3E1853354582%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1853354582&rft_id=info:pmid/28017796&rft_els_id=S1934590916304015&rfr_iscdi=true