Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex
The brain's connectivity skeleton-a rich club of strongly interconnected members-was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing t...
Gespeichert in:
Veröffentlicht in: | Frontiers in neuroscience 2017-04, Vol.11, p.184-184 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | |
container_start_page | 184 |
container_title | Frontiers in neuroscience |
container_volume | 11 |
creator | Lord, Anton R Li, Meng Demenescu, Liliana R van den Meer, Johan Borchardt, Viola Krause, Anna Linda Heinze, Hans-Jochen Breakspear, Michael Walter, Martin |
description | The brain's connectivity skeleton-a rich club of strongly interconnected members-was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing the cost of inter-network communication. The posterior cingulate cortex (PCC), a hub node embedded within the default mode network, is known to facilitate communication between brain networks and is a key member of the "rich club." Here, we assessed how metabolic signatures of neuronal integrity and cortical thickness influence the global extent of a functional rich club as measured using the functional rich club coefficient (fRCC). Rich club estimation was performed on functional connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects. Magnetic resonance spectroscopy was measured in the same session using a point resolved spectroscopy sequence. We confirmed convergence of functional rich club with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC is significantly correlated with age (
= 0.001), while the rich club coefficient showed no effect of age
= 0.106). In addition, we found a significant quadratic relationship between fRCC and NAA concentration in PCC (
= 0.009). Furthermore, cortical thinning in the PCC was correlated with a reduced rich club coefficient after accounting for age and NAA. In conclusion, we found that the fRCC is related to a marker of neuronal integrity in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area was observed, suggesting that both cortical thinning and neuronal integrity in the hub regions influence functional integration of at a whole brain level. |
doi_str_mv | 10.3389/fnins.2017.00184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5384321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891895598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-394811c3f4a28bf4973f878ba604ea87d9357a2e651cdf73b93916ec162cd9663</originalsourceid><addsrcrecordid>eNpdkd9LHDEQx0NRqrV975Ms-OLLnfm12eSlIKdWQbSUFvoWctnZu-heciZZW_97c3d6VGFgJsxnvkzmi9BXgseMSXXSeefTmGLSjDEmkn9A-0QIOuI1-7OzrbncQ59SusNYUMnpR7RXElOU8n10_9PZuYeUKueri8Hb7II3fTUJ3kN5PLr8VJ3BEnybquCrPIfqBoa4hq58hllcEX9dnrtN90dIGaILsZo4Pxt6k6GoxQz_PqPdzvQJvrzkA_T74vzX5HJ0ffv9anJ6PbKc8jxiiktCLOu4oXLacdWwTjZyagTmYGTTKlY3hoKoiW27hk0VU0SAJYLaVgnBDtC3je5ymC6gteBzNL1eRrcw8UkH4_TbjndzPQuPumblLpQUgeMXgRgeBkhZL1yy0PfGQxiSJlKVqGslC3r0Dr0LQyzHSZoyXEvMJGWFwhvKxpBShG67DMF65aReO6lXTuq1k2Xk8P9PbAderWPPm7Wcqw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305803823</pqid></control><display><type>article</type><title>Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Lord, Anton R ; Li, Meng ; Demenescu, Liliana R ; van den Meer, Johan ; Borchardt, Viola ; Krause, Anna Linda ; Heinze, Hans-Jochen ; Breakspear, Michael ; Walter, Martin</creator><creatorcontrib>Lord, Anton R ; Li, Meng ; Demenescu, Liliana R ; van den Meer, Johan ; Borchardt, Viola ; Krause, Anna Linda ; Heinze, Hans-Jochen ; Breakspear, Michael ; Walter, Martin</creatorcontrib><description>The brain's connectivity skeleton-a rich club of strongly interconnected members-was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing the cost of inter-network communication. The posterior cingulate cortex (PCC), a hub node embedded within the default mode network, is known to facilitate communication between brain networks and is a key member of the "rich club." Here, we assessed how metabolic signatures of neuronal integrity and cortical thickness influence the global extent of a functional rich club as measured using the functional rich club coefficient (fRCC). Rich club estimation was performed on functional connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects. Magnetic resonance spectroscopy was measured in the same session using a point resolved spectroscopy sequence. We confirmed convergence of functional rich club with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC is significantly correlated with age (
= 0.001), while the rich club coefficient showed no effect of age
= 0.106). In addition, we found a significant quadratic relationship between fRCC and NAA concentration in PCC (
= 0.009). Furthermore, cortical thinning in the PCC was correlated with a reduced rich club coefficient after accounting for age and NAA. In conclusion, we found that the fRCC is related to a marker of neuronal integrity in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area was observed, suggesting that both cortical thinning and neuronal integrity in the hub regions influence functional integration of at a whole brain level.</description><identifier>ISSN: 1662-4548</identifier><identifier>ISSN: 1662-453X</identifier><identifier>EISSN: 1662-453X</identifier><identifier>DOI: 10.3389/fnins.2017.00184</identifier><identifier>PMID: 28439224</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Age ; Brain ; Communication ; Cortex (cingulate) ; Magnetic resonance spectroscopy ; Metabolism ; Metabolites ; N-Acetylaspartate ; Neural networks ; Neuroscience ; Neurosciences ; Psychiatry ; Spectrum analysis ; Studies ; Thinning</subject><ispartof>Frontiers in neuroscience, 2017-04, Vol.11, p.184-184</ispartof><rights>2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2017 Lord, Li, Demenescu, van den Meer, Borchardt, Krause, Heinze, Breakspear and Walter. 2017 Lord, Li, Demenescu, van den Meer, Borchardt, Krause, Heinze, Breakspear and Walter</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-394811c3f4a28bf4973f878ba604ea87d9357a2e651cdf73b93916ec162cd9663</citedby><cites>FETCH-LOGICAL-c424t-394811c3f4a28bf4973f878ba604ea87d9357a2e651cdf73b93916ec162cd9663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384321/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384321/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28439224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lord, Anton R</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Demenescu, Liliana R</creatorcontrib><creatorcontrib>van den Meer, Johan</creatorcontrib><creatorcontrib>Borchardt, Viola</creatorcontrib><creatorcontrib>Krause, Anna Linda</creatorcontrib><creatorcontrib>Heinze, Hans-Jochen</creatorcontrib><creatorcontrib>Breakspear, Michael</creatorcontrib><creatorcontrib>Walter, Martin</creatorcontrib><title>Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex</title><title>Frontiers in neuroscience</title><addtitle>Front Neurosci</addtitle><description>The brain's connectivity skeleton-a rich club of strongly interconnected members-was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing the cost of inter-network communication. The posterior cingulate cortex (PCC), a hub node embedded within the default mode network, is known to facilitate communication between brain networks and is a key member of the "rich club." Here, we assessed how metabolic signatures of neuronal integrity and cortical thickness influence the global extent of a functional rich club as measured using the functional rich club coefficient (fRCC). Rich club estimation was performed on functional connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects. Magnetic resonance spectroscopy was measured in the same session using a point resolved spectroscopy sequence. We confirmed convergence of functional rich club with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC is significantly correlated with age (
= 0.001), while the rich club coefficient showed no effect of age
= 0.106). In addition, we found a significant quadratic relationship between fRCC and NAA concentration in PCC (
= 0.009). Furthermore, cortical thinning in the PCC was correlated with a reduced rich club coefficient after accounting for age and NAA. In conclusion, we found that the fRCC is related to a marker of neuronal integrity in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area was observed, suggesting that both cortical thinning and neuronal integrity in the hub regions influence functional integration of at a whole brain level.</description><subject>Age</subject><subject>Brain</subject><subject>Communication</subject><subject>Cortex (cingulate)</subject><subject>Magnetic resonance spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>N-Acetylaspartate</subject><subject>Neural networks</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Psychiatry</subject><subject>Spectrum analysis</subject><subject>Studies</subject><subject>Thinning</subject><issn>1662-4548</issn><issn>1662-453X</issn><issn>1662-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkd9LHDEQx0NRqrV975Ms-OLLnfm12eSlIKdWQbSUFvoWctnZu-heciZZW_97c3d6VGFgJsxnvkzmi9BXgseMSXXSeefTmGLSjDEmkn9A-0QIOuI1-7OzrbncQ59SusNYUMnpR7RXElOU8n10_9PZuYeUKueri8Hb7II3fTUJ3kN5PLr8VJ3BEnybquCrPIfqBoa4hq58hllcEX9dnrtN90dIGaILsZo4Pxt6k6GoxQz_PqPdzvQJvrzkA_T74vzX5HJ0ffv9anJ6PbKc8jxiiktCLOu4oXLacdWwTjZyagTmYGTTKlY3hoKoiW27hk0VU0SAJYLaVgnBDtC3je5ymC6gteBzNL1eRrcw8UkH4_TbjndzPQuPumblLpQUgeMXgRgeBkhZL1yy0PfGQxiSJlKVqGslC3r0Dr0LQyzHSZoyXEvMJGWFwhvKxpBShG67DMF65aReO6lXTuq1k2Xk8P9PbAderWPPm7Wcqw</recordid><startdate>20170407</startdate><enddate>20170407</enddate><creator>Lord, Anton R</creator><creator>Li, Meng</creator><creator>Demenescu, Liliana R</creator><creator>van den Meer, Johan</creator><creator>Borchardt, Viola</creator><creator>Krause, Anna Linda</creator><creator>Heinze, Hans-Jochen</creator><creator>Breakspear, Michael</creator><creator>Walter, Martin</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170407</creationdate><title>Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex</title><author>Lord, Anton R ; Li, Meng ; Demenescu, Liliana R ; van den Meer, Johan ; Borchardt, Viola ; Krause, Anna Linda ; Heinze, Hans-Jochen ; Breakspear, Michael ; Walter, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-394811c3f4a28bf4973f878ba604ea87d9357a2e651cdf73b93916ec162cd9663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Age</topic><topic>Brain</topic><topic>Communication</topic><topic>Cortex (cingulate)</topic><topic>Magnetic resonance spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>N-Acetylaspartate</topic><topic>Neural networks</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Psychiatry</topic><topic>Spectrum analysis</topic><topic>Studies</topic><topic>Thinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lord, Anton R</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Demenescu, Liliana R</creatorcontrib><creatorcontrib>van den Meer, Johan</creatorcontrib><creatorcontrib>Borchardt, Viola</creatorcontrib><creatorcontrib>Krause, Anna Linda</creatorcontrib><creatorcontrib>Heinze, Hans-Jochen</creatorcontrib><creatorcontrib>Breakspear, Michael</creatorcontrib><creatorcontrib>Walter, Martin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Frontiers in neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lord, Anton R</au><au>Li, Meng</au><au>Demenescu, Liliana R</au><au>van den Meer, Johan</au><au>Borchardt, Viola</au><au>Krause, Anna Linda</au><au>Heinze, Hans-Jochen</au><au>Breakspear, Michael</au><au>Walter, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex</atitle><jtitle>Frontiers in neuroscience</jtitle><addtitle>Front Neurosci</addtitle><date>2017-04-07</date><risdate>2017</risdate><volume>11</volume><spage>184</spage><epage>184</epage><pages>184-184</pages><issn>1662-4548</issn><issn>1662-453X</issn><eissn>1662-453X</eissn><abstract>The brain's connectivity skeleton-a rich club of strongly interconnected members-was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing the cost of inter-network communication. The posterior cingulate cortex (PCC), a hub node embedded within the default mode network, is known to facilitate communication between brain networks and is a key member of the "rich club." Here, we assessed how metabolic signatures of neuronal integrity and cortical thickness influence the global extent of a functional rich club as measured using the functional rich club coefficient (fRCC). Rich club estimation was performed on functional connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects. Magnetic resonance spectroscopy was measured in the same session using a point resolved spectroscopy sequence. We confirmed convergence of functional rich club with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC is significantly correlated with age (
= 0.001), while the rich club coefficient showed no effect of age
= 0.106). In addition, we found a significant quadratic relationship between fRCC and NAA concentration in PCC (
= 0.009). Furthermore, cortical thinning in the PCC was correlated with a reduced rich club coefficient after accounting for age and NAA. In conclusion, we found that the fRCC is related to a marker of neuronal integrity in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area was observed, suggesting that both cortical thinning and neuronal integrity in the hub regions influence functional integration of at a whole brain level.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>28439224</pmid><doi>10.3389/fnins.2017.00184</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-4548 |
ispartof | Frontiers in neuroscience, 2017-04, Vol.11, p.184-184 |
issn | 1662-4548 1662-453X 1662-453X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5384321 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Age Brain Communication Cortex (cingulate) Magnetic resonance spectroscopy Metabolism Metabolites N-Acetylaspartate Neural networks Neuroscience Neurosciences Psychiatry Spectrum analysis Studies Thinning |
title | Richness in Functional Connectivity Depends on the Neuronal Integrity within the Posterior Cingulate Cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A44%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Richness%20in%20Functional%20Connectivity%20Depends%20on%20the%20Neuronal%20Integrity%20within%20the%20Posterior%20Cingulate%20Cortex&rft.jtitle=Frontiers%20in%20neuroscience&rft.au=Lord,%20Anton%20R&rft.date=2017-04-07&rft.volume=11&rft.spage=184&rft.epage=184&rft.pages=184-184&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389/fnins.2017.00184&rft_dat=%3Cproquest_pubme%3E1891895598%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2305803823&rft_id=info:pmid/28439224&rfr_iscdi=true |