Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer
Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potentia...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2017-04, Vol.7 (1), p.45938-45938, Article 45938 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45938 |
---|---|
container_issue | 1 |
container_start_page | 45938 |
container_title | Scientific reports |
container_volume | 7 |
creator | Vandenberghe, Michel E. Scott, Marietta L. J. Scorer, Paul W. Söderberg, Magnus Balcerzak, Denis Barker, Craig |
description | Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potential to supplement pathologist expertise to ensure constant diagnostic accuracy. We developed a computational approach based on deep learning that automatically scores HER2, a biomarker that defines patient eligibility for anti-HER2 targeted therapies in breast cancer. In a cohort of 71 breast tumour resection samples, automated scoring showed a concordance of 83% with a pathologist. The twelve discordant cases were then independently reviewed, leading to a modification of diagnosis from initial pathologist assessment for eight cases. Diagnostic discordance was found to be largely caused by perceptual differences in assessing HER2 expression due to high HER2 staining heterogeneity. This study provides evidence that deep learning aided diagnosis can facilitate clinical decision making in breast cancer by identifying cases at high risk of misdiagnosis. |
doi_str_mv | 10.1038/srep45938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5380996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884477111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-1753bdfbfea0f48652e64a2e06941bec4be819fdf18cd3cd46a7199b838036843</originalsourceid><addsrcrecordid>eNplkV1LIzEUhoMoKurF_gEJeOMK3c3XzCQ3gohaQVgourchkzmpkWlSkxlh_70p1VLd3CTwPjw5hxehH5T8ooTL3znBUlSKyx10yIioJowztrv1PkAnOb-QciqmBFX76IBJ3kjJ1CH6O4Me3kywgKPDHcAS92BS8GGOh4idsb73gxkAD8-AO2_mIWafV_D0ZsZwLtmYsQ-4TWDygO3KlY7RnjN9hpOP-wg93d48Xk8nD3_u7q-vHia2ImKY0KbibedaB4Y4IeuKQS0MA1KXQVuwogVJlesclbbjthO1aahSreSS8FoKfoQu197l2C6gsxCGZHq9TH5h0j8djddfk-Cf9Ty-6aoYlKqL4PxDkOLrCHnQC58t9L0JEMesqZRCNA2ltKBn39CXOKZQ1tNUES6kqNWK-rmmbIq5dOM2w1CiV4XpTWGFPd2efkN-1lOAizWQSxTmkLa-_M_2DqyHn3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903484691</pqid></control><display><type>article</type><title>Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vandenberghe, Michel E. ; Scott, Marietta L. J. ; Scorer, Paul W. ; Söderberg, Magnus ; Balcerzak, Denis ; Barker, Craig</creator><creatorcontrib>Vandenberghe, Michel E. ; Scott, Marietta L. J. ; Scorer, Paul W. ; Söderberg, Magnus ; Balcerzak, Denis ; Barker, Craig</creatorcontrib><description>Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potential to supplement pathologist expertise to ensure constant diagnostic accuracy. We developed a computational approach based on deep learning that automatically scores HER2, a biomarker that defines patient eligibility for anti-HER2 targeted therapies in breast cancer. In a cohort of 71 breast tumour resection samples, automated scoring showed a concordance of 83% with a pathologist. The twelve discordant cases were then independently reviewed, leading to a modification of diagnosis from initial pathologist assessment for eight cases. Diagnostic discordance was found to be largely caused by perceptual differences in assessing HER2 expression due to high HER2 staining heterogeneity. This study provides evidence that deep learning aided diagnosis can facilitate clinical decision making in breast cancer by identifying cases at high risk of misdiagnosis.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep45938</identifier><identifier>PMID: 28378829</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/117 ; 692/4028/67/1347 ; 692/53/2421 ; Antineoplastic Agents, Immunological - therapeutic use ; Artificial intelligence ; Biomarkers, Tumor - antagonists & inhibitors ; Biomarkers, Tumor - metabolism ; Breast cancer ; Breast Neoplasms - diagnosis ; Breast Neoplasms - drug therapy ; Breast Neoplasms - metabolism ; Cohort Studies ; Computer applications ; Decision making ; Diagnosis, Computer-Assisted - methods ; Discordance ; ErbB-2 protein ; Female ; Heterogeneity ; Humanities and Social Sciences ; Humans ; Immunohistochemistry ; Machine Learning ; multidisciplinary ; Receptor, ErbB-2 - antagonists & inhibitors ; Receptor, ErbB-2 - metabolism ; Reproducibility of Results ; Science ; Trastuzumab - therapeutic use ; Tumors</subject><ispartof>Scientific reports, 2017-04, Vol.7 (1), p.45938-45938, Article 45938</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Apr 2017</rights><rights>Copyright © 2017, The Author(s) 2017 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-1753bdfbfea0f48652e64a2e06941bec4be819fdf18cd3cd46a7199b838036843</citedby><cites>FETCH-LOGICAL-c504t-1753bdfbfea0f48652e64a2e06941bec4be819fdf18cd3cd46a7199b838036843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380996/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380996/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28378829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vandenberghe, Michel E.</creatorcontrib><creatorcontrib>Scott, Marietta L. J.</creatorcontrib><creatorcontrib>Scorer, Paul W.</creatorcontrib><creatorcontrib>Söderberg, Magnus</creatorcontrib><creatorcontrib>Balcerzak, Denis</creatorcontrib><creatorcontrib>Barker, Craig</creatorcontrib><title>Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potential to supplement pathologist expertise to ensure constant diagnostic accuracy. We developed a computational approach based on deep learning that automatically scores HER2, a biomarker that defines patient eligibility for anti-HER2 targeted therapies in breast cancer. In a cohort of 71 breast tumour resection samples, automated scoring showed a concordance of 83% with a pathologist. The twelve discordant cases were then independently reviewed, leading to a modification of diagnosis from initial pathologist assessment for eight cases. Diagnostic discordance was found to be largely caused by perceptual differences in assessing HER2 expression due to high HER2 staining heterogeneity. This study provides evidence that deep learning aided diagnosis can facilitate clinical decision making in breast cancer by identifying cases at high risk of misdiagnosis.</description><subject>639/705/117</subject><subject>692/4028/67/1347</subject><subject>692/53/2421</subject><subject>Antineoplastic Agents, Immunological - therapeutic use</subject><subject>Artificial intelligence</subject><subject>Biomarkers, Tumor - antagonists & inhibitors</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - diagnosis</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - metabolism</subject><subject>Cohort Studies</subject><subject>Computer applications</subject><subject>Decision making</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Discordance</subject><subject>ErbB-2 protein</subject><subject>Female</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Machine Learning</subject><subject>multidisciplinary</subject><subject>Receptor, ErbB-2 - antagonists & inhibitors</subject><subject>Receptor, ErbB-2 - metabolism</subject><subject>Reproducibility of Results</subject><subject>Science</subject><subject>Trastuzumab - therapeutic use</subject><subject>Tumors</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LIzEUhoMoKurF_gEJeOMK3c3XzCQ3gohaQVgourchkzmpkWlSkxlh_70p1VLd3CTwPjw5hxehH5T8ooTL3znBUlSKyx10yIioJowztrv1PkAnOb-QciqmBFX76IBJ3kjJ1CH6O4Me3kywgKPDHcAS92BS8GGOh4idsb73gxkAD8-AO2_mIWafV_D0ZsZwLtmYsQ-4TWDygO3KlY7RnjN9hpOP-wg93d48Xk8nD3_u7q-vHia2ImKY0KbibedaB4Y4IeuKQS0MA1KXQVuwogVJlesclbbjthO1aahSreSS8FoKfoQu197l2C6gsxCGZHq9TH5h0j8djddfk-Cf9Ty-6aoYlKqL4PxDkOLrCHnQC58t9L0JEMesqZRCNA2ltKBn39CXOKZQ1tNUES6kqNWK-rmmbIq5dOM2w1CiV4XpTWGFPd2efkN-1lOAizWQSxTmkLa-_M_2DqyHn3Q</recordid><startdate>20170405</startdate><enddate>20170405</enddate><creator>Vandenberghe, Michel E.</creator><creator>Scott, Marietta L. J.</creator><creator>Scorer, Paul W.</creator><creator>Söderberg, Magnus</creator><creator>Balcerzak, Denis</creator><creator>Barker, Craig</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170405</creationdate><title>Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer</title><author>Vandenberghe, Michel E. ; Scott, Marietta L. J. ; Scorer, Paul W. ; Söderberg, Magnus ; Balcerzak, Denis ; Barker, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-1753bdfbfea0f48652e64a2e06941bec4be819fdf18cd3cd46a7199b838036843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/705/117</topic><topic>692/4028/67/1347</topic><topic>692/53/2421</topic><topic>Antineoplastic Agents, Immunological - therapeutic use</topic><topic>Artificial intelligence</topic><topic>Biomarkers, Tumor - antagonists & inhibitors</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - diagnosis</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - metabolism</topic><topic>Cohort Studies</topic><topic>Computer applications</topic><topic>Decision making</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Discordance</topic><topic>ErbB-2 protein</topic><topic>Female</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Machine Learning</topic><topic>multidisciplinary</topic><topic>Receptor, ErbB-2 - antagonists & inhibitors</topic><topic>Receptor, ErbB-2 - metabolism</topic><topic>Reproducibility of Results</topic><topic>Science</topic><topic>Trastuzumab - therapeutic use</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vandenberghe, Michel E.</creatorcontrib><creatorcontrib>Scott, Marietta L. J.</creatorcontrib><creatorcontrib>Scorer, Paul W.</creatorcontrib><creatorcontrib>Söderberg, Magnus</creatorcontrib><creatorcontrib>Balcerzak, Denis</creatorcontrib><creatorcontrib>Barker, Craig</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vandenberghe, Michel E.</au><au>Scott, Marietta L. J.</au><au>Scorer, Paul W.</au><au>Söderberg, Magnus</au><au>Balcerzak, Denis</au><au>Barker, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-04-05</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>45938</spage><epage>45938</epage><pages>45938-45938</pages><artnum>45938</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potential to supplement pathologist expertise to ensure constant diagnostic accuracy. We developed a computational approach based on deep learning that automatically scores HER2, a biomarker that defines patient eligibility for anti-HER2 targeted therapies in breast cancer. In a cohort of 71 breast tumour resection samples, automated scoring showed a concordance of 83% with a pathologist. The twelve discordant cases were then independently reviewed, leading to a modification of diagnosis from initial pathologist assessment for eight cases. Diagnostic discordance was found to be largely caused by perceptual differences in assessing HER2 expression due to high HER2 staining heterogeneity. This study provides evidence that deep learning aided diagnosis can facilitate clinical decision making in breast cancer by identifying cases at high risk of misdiagnosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28378829</pmid><doi>10.1038/srep45938</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-04, Vol.7 (1), p.45938-45938, Article 45938 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5380996 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 639/705/117 692/4028/67/1347 692/53/2421 Antineoplastic Agents, Immunological - therapeutic use Artificial intelligence Biomarkers, Tumor - antagonists & inhibitors Biomarkers, Tumor - metabolism Breast cancer Breast Neoplasms - diagnosis Breast Neoplasms - drug therapy Breast Neoplasms - metabolism Cohort Studies Computer applications Decision making Diagnosis, Computer-Assisted - methods Discordance ErbB-2 protein Female Heterogeneity Humanities and Social Sciences Humans Immunohistochemistry Machine Learning multidisciplinary Receptor, ErbB-2 - antagonists & inhibitors Receptor, ErbB-2 - metabolism Reproducibility of Results Science Trastuzumab - therapeutic use Tumors |
title | Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relevance%20of%20deep%20learning%20to%20facilitate%20the%20diagnosis%20of%20HER2%20status%20in%20breast%20cancer&rft.jtitle=Scientific%20reports&rft.au=Vandenberghe,%20Michel%20E.&rft.date=2017-04-05&rft.volume=7&rft.issue=1&rft.spage=45938&rft.epage=45938&rft.pages=45938-45938&rft.artnum=45938&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep45938&rft_dat=%3Cproquest_pubme%3E1884477111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903484691&rft_id=info:pmid/28378829&rfr_iscdi=true |