In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy
Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spec...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-03, Vol.114 (13), p.3393-3396 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3396 |
---|---|
container_issue | 13 |
container_start_page | 3393 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Altangerel, Narangerel Ariunbold, Gombojav O. Gorman, Connor Alkahtani, Masfer H. Borrego, Eli J. Bohlmeyer, Dwight Hemmer, Philip Kolomiets, Michael V. Yuan, Joshua S. Scully, Marlan O. |
description | Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments. |
doi_str_mv | 10.1073/pnas.1701328114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5380084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480335</jstor_id><sourcerecordid>26480335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-73d83a72f4f10f304fef27faf94744a2a14ee32f98bf527970eb7b46370ffe5b3</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRzCbm7Elp8OJlkurvnosQgsZAIETMuemZ7Y6zzHaPXbML--_tZWOiXrxUQdVTL1X1EvKWwRkDI86n5PGMGWCCW8bkC7Jg0LJGyxZekgUAN42VXB6RY8QVALTKwmtyxC23LQe2IHfXiW6HbabLwT-kjPPQI82RBl_GHfXdkGuFTqNPM8W5BERaw5QThjrn6Te_9oniFPq5ZOzztHtDXkU_Yjh9zCfk_svn75dfm5vbq-vLi5umV5LPjRFLK7zhUUYGUYCMIXITfWylkdJzz2QIgsfWdlFx0xoInemkFgZiDKoTJ-TTQXfadOuw7EOaix_dVIa1LzuX_eD-7qThh3vIW6eEBbCyCnx8FCj55ybg7NYD9mGst4a8Qce10FIbpfV_UWaNUVwrsUc__IOu8qak-olKWcWFMMpU6vxA9fVrWEJ82puB2zvr9s66Z2frxPs_z33if1tZgXcHYIVzLs99LS0IocQvks-pwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885233757</pqid></control><display><type>article</type><title>In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Altangerel, Narangerel ; Ariunbold, Gombojav O. ; Gorman, Connor ; Alkahtani, Masfer H. ; Borrego, Eli J. ; Bohlmeyer, Dwight ; Hemmer, Philip ; Kolomiets, Michael V. ; Yuan, Joshua S. ; Scully, Marlan O.</creator><creatorcontrib>Altangerel, Narangerel ; Ariunbold, Gombojav O. ; Gorman, Connor ; Alkahtani, Masfer H. ; Borrego, Eli J. ; Bohlmeyer, Dwight ; Hemmer, Philip ; Kolomiets, Michael V. ; Yuan, Joshua S. ; Scully, Marlan O.</creatorcontrib><description>Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1701328114</identifier><identifier>PMID: 28289201</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>abiotic stress ; Adaptation, Physiological ; anthocyanins ; Antioxidants ; Biological Sciences ; carotenoids ; Coleus - chemistry ; Coleus - physiology ; Correlation analysis ; diagnostic techniques ; Drought ; Droughts ; Flowers & plants ; Genotype & phenotype ; phenotype ; Physical Sciences ; Pigments ; plant stress ; Plectranthus scutellarioides ; Raman spectroscopy ; Salinity ; Soil - chemistry ; soil salinity ; Spectrum Analysis, Raman - methods ; stress response</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (13), p.3393-3396</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 28, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-73d83a72f4f10f304fef27faf94744a2a14ee32f98bf527970eb7b46370ffe5b3</citedby><cites>FETCH-LOGICAL-c542t-73d83a72f4f10f304fef27faf94744a2a14ee32f98bf527970eb7b46370ffe5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480335$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480335$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28289201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Altangerel, Narangerel</creatorcontrib><creatorcontrib>Ariunbold, Gombojav O.</creatorcontrib><creatorcontrib>Gorman, Connor</creatorcontrib><creatorcontrib>Alkahtani, Masfer H.</creatorcontrib><creatorcontrib>Borrego, Eli J.</creatorcontrib><creatorcontrib>Bohlmeyer, Dwight</creatorcontrib><creatorcontrib>Hemmer, Philip</creatorcontrib><creatorcontrib>Kolomiets, Michael V.</creatorcontrib><creatorcontrib>Yuan, Joshua S.</creatorcontrib><creatorcontrib>Scully, Marlan O.</creatorcontrib><title>In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.</description><subject>abiotic stress</subject><subject>Adaptation, Physiological</subject><subject>anthocyanins</subject><subject>Antioxidants</subject><subject>Biological Sciences</subject><subject>carotenoids</subject><subject>Coleus - chemistry</subject><subject>Coleus - physiology</subject><subject>Correlation analysis</subject><subject>diagnostic techniques</subject><subject>Drought</subject><subject>Droughts</subject><subject>Flowers & plants</subject><subject>Genotype & phenotype</subject><subject>phenotype</subject><subject>Physical Sciences</subject><subject>Pigments</subject><subject>plant stress</subject><subject>Plectranthus scutellarioides</subject><subject>Raman spectroscopy</subject><subject>Salinity</subject><subject>Soil - chemistry</subject><subject>soil salinity</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>stress response</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rFEEQhhtRzCbm7Elp8OJlkurvnosQgsZAIETMuemZ7Y6zzHaPXbML--_tZWOiXrxUQdVTL1X1EvKWwRkDI86n5PGMGWCCW8bkC7Jg0LJGyxZekgUAN42VXB6RY8QVALTKwmtyxC23LQe2IHfXiW6HbabLwT-kjPPQI82RBl_GHfXdkGuFTqNPM8W5BERaw5QThjrn6Te_9oniFPq5ZOzztHtDXkU_Yjh9zCfk_svn75dfm5vbq-vLi5umV5LPjRFLK7zhUUYGUYCMIXITfWylkdJzz2QIgsfWdlFx0xoInemkFgZiDKoTJ-TTQXfadOuw7EOaix_dVIa1LzuX_eD-7qThh3vIW6eEBbCyCnx8FCj55ybg7NYD9mGst4a8Qce10FIbpfV_UWaNUVwrsUc__IOu8qak-olKWcWFMMpU6vxA9fVrWEJ82puB2zvr9s66Z2frxPs_z33if1tZgXcHYIVzLs99LS0IocQvks-pwA</recordid><startdate>20170328</startdate><enddate>20170328</enddate><creator>Altangerel, Narangerel</creator><creator>Ariunbold, Gombojav O.</creator><creator>Gorman, Connor</creator><creator>Alkahtani, Masfer H.</creator><creator>Borrego, Eli J.</creator><creator>Bohlmeyer, Dwight</creator><creator>Hemmer, Philip</creator><creator>Kolomiets, Michael V.</creator><creator>Yuan, Joshua S.</creator><creator>Scully, Marlan O.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20170328</creationdate><title>In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy</title><author>Altangerel, Narangerel ; Ariunbold, Gombojav O. ; Gorman, Connor ; Alkahtani, Masfer H. ; Borrego, Eli J. ; Bohlmeyer, Dwight ; Hemmer, Philip ; Kolomiets, Michael V. ; Yuan, Joshua S. ; Scully, Marlan O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-73d83a72f4f10f304fef27faf94744a2a14ee32f98bf527970eb7b46370ffe5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>abiotic stress</topic><topic>Adaptation, Physiological</topic><topic>anthocyanins</topic><topic>Antioxidants</topic><topic>Biological Sciences</topic><topic>carotenoids</topic><topic>Coleus - chemistry</topic><topic>Coleus - physiology</topic><topic>Correlation analysis</topic><topic>diagnostic techniques</topic><topic>Drought</topic><topic>Droughts</topic><topic>Flowers & plants</topic><topic>Genotype & phenotype</topic><topic>phenotype</topic><topic>Physical Sciences</topic><topic>Pigments</topic><topic>plant stress</topic><topic>Plectranthus scutellarioides</topic><topic>Raman spectroscopy</topic><topic>Salinity</topic><topic>Soil - chemistry</topic><topic>soil salinity</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>stress response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altangerel, Narangerel</creatorcontrib><creatorcontrib>Ariunbold, Gombojav O.</creatorcontrib><creatorcontrib>Gorman, Connor</creatorcontrib><creatorcontrib>Alkahtani, Masfer H.</creatorcontrib><creatorcontrib>Borrego, Eli J.</creatorcontrib><creatorcontrib>Bohlmeyer, Dwight</creatorcontrib><creatorcontrib>Hemmer, Philip</creatorcontrib><creatorcontrib>Kolomiets, Michael V.</creatorcontrib><creatorcontrib>Yuan, Joshua S.</creatorcontrib><creatorcontrib>Scully, Marlan O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altangerel, Narangerel</au><au>Ariunbold, Gombojav O.</au><au>Gorman, Connor</au><au>Alkahtani, Masfer H.</au><au>Borrego, Eli J.</au><au>Bohlmeyer, Dwight</au><au>Hemmer, Philip</au><au>Kolomiets, Michael V.</au><au>Yuan, Joshua S.</au><au>Scully, Marlan O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-03-28</date><risdate>2017</risdate><volume>114</volume><issue>13</issue><spage>3393</spage><epage>3396</epage><pages>3393-3396</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28289201</pmid><doi>10.1073/pnas.1701328114</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (13), p.3393-3396 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5380084 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | abiotic stress Adaptation, Physiological anthocyanins Antioxidants Biological Sciences carotenoids Coleus - chemistry Coleus - physiology Correlation analysis diagnostic techniques Drought Droughts Flowers & plants Genotype & phenotype phenotype Physical Sciences Pigments plant stress Plectranthus scutellarioides Raman spectroscopy Salinity Soil - chemistry soil salinity Spectrum Analysis, Raman - methods stress response |
title | In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A10%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20diagnostics%20of%20early%20abiotic%20plant%20stress%20response%20via%20Raman%20spectroscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Altangerel,%20Narangerel&rft.date=2017-03-28&rft.volume=114&rft.issue=13&rft.spage=3393&rft.epage=3396&rft.pages=3393-3396&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1701328114&rft_dat=%3Cjstor_pubme%3E26480335%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885233757&rft_id=info:pmid/28289201&rft_jstor_id=26480335&rfr_iscdi=true |