In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy

Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-03, Vol.114 (13), p.3393-3396
Hauptverfasser: Altangerel, Narangerel, Ariunbold, Gombojav O., Gorman, Connor, Alkahtani, Masfer H., Borrego, Eli J., Bohlmeyer, Dwight, Hemmer, Philip, Kolomiets, Michael V., Yuan, Joshua S., Scully, Marlan O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3396
container_issue 13
container_start_page 3393
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Altangerel, Narangerel
Ariunbold, Gombojav O.
Gorman, Connor
Alkahtani, Masfer H.
Borrego, Eli J.
Bohlmeyer, Dwight
Hemmer, Philip
Kolomiets, Michael V.
Yuan, Joshua S.
Scully, Marlan O.
description Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.
doi_str_mv 10.1073/pnas.1701328114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5380084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480335</jstor_id><sourcerecordid>26480335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-73d83a72f4f10f304fef27faf94744a2a14ee32f98bf527970eb7b46370ffe5b3</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRzCbm7Elp8OJlkurvnosQgsZAIETMuemZ7Y6zzHaPXbML--_tZWOiXrxUQdVTL1X1EvKWwRkDI86n5PGMGWCCW8bkC7Jg0LJGyxZekgUAN42VXB6RY8QVALTKwmtyxC23LQe2IHfXiW6HbabLwT-kjPPQI82RBl_GHfXdkGuFTqNPM8W5BERaw5QThjrn6Te_9oniFPq5ZOzztHtDXkU_Yjh9zCfk_svn75dfm5vbq-vLi5umV5LPjRFLK7zhUUYGUYCMIXITfWylkdJzz2QIgsfWdlFx0xoInemkFgZiDKoTJ-TTQXfadOuw7EOaix_dVIa1LzuX_eD-7qThh3vIW6eEBbCyCnx8FCj55ybg7NYD9mGst4a8Qce10FIbpfV_UWaNUVwrsUc__IOu8qak-olKWcWFMMpU6vxA9fVrWEJ82puB2zvr9s66Z2frxPs_z33if1tZgXcHYIVzLs99LS0IocQvks-pwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885233757</pqid></control><display><type>article</type><title>In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Altangerel, Narangerel ; Ariunbold, Gombojav O. ; Gorman, Connor ; Alkahtani, Masfer H. ; Borrego, Eli J. ; Bohlmeyer, Dwight ; Hemmer, Philip ; Kolomiets, Michael V. ; Yuan, Joshua S. ; Scully, Marlan O.</creator><creatorcontrib>Altangerel, Narangerel ; Ariunbold, Gombojav O. ; Gorman, Connor ; Alkahtani, Masfer H. ; Borrego, Eli J. ; Bohlmeyer, Dwight ; Hemmer, Philip ; Kolomiets, Michael V. ; Yuan, Joshua S. ; Scully, Marlan O.</creatorcontrib><description>Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1701328114</identifier><identifier>PMID: 28289201</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>abiotic stress ; Adaptation, Physiological ; anthocyanins ; Antioxidants ; Biological Sciences ; carotenoids ; Coleus - chemistry ; Coleus - physiology ; Correlation analysis ; diagnostic techniques ; Drought ; Droughts ; Flowers &amp; plants ; Genotype &amp; phenotype ; phenotype ; Physical Sciences ; Pigments ; plant stress ; Plectranthus scutellarioides ; Raman spectroscopy ; Salinity ; Soil - chemistry ; soil salinity ; Spectrum Analysis, Raman - methods ; stress response</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (13), p.3393-3396</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 28, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-73d83a72f4f10f304fef27faf94744a2a14ee32f98bf527970eb7b46370ffe5b3</citedby><cites>FETCH-LOGICAL-c542t-73d83a72f4f10f304fef27faf94744a2a14ee32f98bf527970eb7b46370ffe5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480335$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480335$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28289201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Altangerel, Narangerel</creatorcontrib><creatorcontrib>Ariunbold, Gombojav O.</creatorcontrib><creatorcontrib>Gorman, Connor</creatorcontrib><creatorcontrib>Alkahtani, Masfer H.</creatorcontrib><creatorcontrib>Borrego, Eli J.</creatorcontrib><creatorcontrib>Bohlmeyer, Dwight</creatorcontrib><creatorcontrib>Hemmer, Philip</creatorcontrib><creatorcontrib>Kolomiets, Michael V.</creatorcontrib><creatorcontrib>Yuan, Joshua S.</creatorcontrib><creatorcontrib>Scully, Marlan O.</creatorcontrib><title>In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.</description><subject>abiotic stress</subject><subject>Adaptation, Physiological</subject><subject>anthocyanins</subject><subject>Antioxidants</subject><subject>Biological Sciences</subject><subject>carotenoids</subject><subject>Coleus - chemistry</subject><subject>Coleus - physiology</subject><subject>Correlation analysis</subject><subject>diagnostic techniques</subject><subject>Drought</subject><subject>Droughts</subject><subject>Flowers &amp; plants</subject><subject>Genotype &amp; phenotype</subject><subject>phenotype</subject><subject>Physical Sciences</subject><subject>Pigments</subject><subject>plant stress</subject><subject>Plectranthus scutellarioides</subject><subject>Raman spectroscopy</subject><subject>Salinity</subject><subject>Soil - chemistry</subject><subject>soil salinity</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>stress response</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rFEEQhhtRzCbm7Elp8OJlkurvnosQgsZAIETMuemZ7Y6zzHaPXbML--_tZWOiXrxUQdVTL1X1EvKWwRkDI86n5PGMGWCCW8bkC7Jg0LJGyxZekgUAN42VXB6RY8QVALTKwmtyxC23LQe2IHfXiW6HbabLwT-kjPPQI82RBl_GHfXdkGuFTqNPM8W5BERaw5QThjrn6Te_9oniFPq5ZOzztHtDXkU_Yjh9zCfk_svn75dfm5vbq-vLi5umV5LPjRFLK7zhUUYGUYCMIXITfWylkdJzz2QIgsfWdlFx0xoInemkFgZiDKoTJ-TTQXfadOuw7EOaix_dVIa1LzuX_eD-7qThh3vIW6eEBbCyCnx8FCj55ybg7NYD9mGst4a8Qce10FIbpfV_UWaNUVwrsUc__IOu8qak-olKWcWFMMpU6vxA9fVrWEJ82puB2zvr9s66Z2frxPs_z33if1tZgXcHYIVzLs99LS0IocQvks-pwA</recordid><startdate>20170328</startdate><enddate>20170328</enddate><creator>Altangerel, Narangerel</creator><creator>Ariunbold, Gombojav O.</creator><creator>Gorman, Connor</creator><creator>Alkahtani, Masfer H.</creator><creator>Borrego, Eli J.</creator><creator>Bohlmeyer, Dwight</creator><creator>Hemmer, Philip</creator><creator>Kolomiets, Michael V.</creator><creator>Yuan, Joshua S.</creator><creator>Scully, Marlan O.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20170328</creationdate><title>In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy</title><author>Altangerel, Narangerel ; Ariunbold, Gombojav O. ; Gorman, Connor ; Alkahtani, Masfer H. ; Borrego, Eli J. ; Bohlmeyer, Dwight ; Hemmer, Philip ; Kolomiets, Michael V. ; Yuan, Joshua S. ; Scully, Marlan O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-73d83a72f4f10f304fef27faf94744a2a14ee32f98bf527970eb7b46370ffe5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>abiotic stress</topic><topic>Adaptation, Physiological</topic><topic>anthocyanins</topic><topic>Antioxidants</topic><topic>Biological Sciences</topic><topic>carotenoids</topic><topic>Coleus - chemistry</topic><topic>Coleus - physiology</topic><topic>Correlation analysis</topic><topic>diagnostic techniques</topic><topic>Drought</topic><topic>Droughts</topic><topic>Flowers &amp; plants</topic><topic>Genotype &amp; phenotype</topic><topic>phenotype</topic><topic>Physical Sciences</topic><topic>Pigments</topic><topic>plant stress</topic><topic>Plectranthus scutellarioides</topic><topic>Raman spectroscopy</topic><topic>Salinity</topic><topic>Soil - chemistry</topic><topic>soil salinity</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>stress response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Altangerel, Narangerel</creatorcontrib><creatorcontrib>Ariunbold, Gombojav O.</creatorcontrib><creatorcontrib>Gorman, Connor</creatorcontrib><creatorcontrib>Alkahtani, Masfer H.</creatorcontrib><creatorcontrib>Borrego, Eli J.</creatorcontrib><creatorcontrib>Bohlmeyer, Dwight</creatorcontrib><creatorcontrib>Hemmer, Philip</creatorcontrib><creatorcontrib>Kolomiets, Michael V.</creatorcontrib><creatorcontrib>Yuan, Joshua S.</creatorcontrib><creatorcontrib>Scully, Marlan O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altangerel, Narangerel</au><au>Ariunbold, Gombojav O.</au><au>Gorman, Connor</au><au>Alkahtani, Masfer H.</au><au>Borrego, Eli J.</au><au>Bohlmeyer, Dwight</au><au>Hemmer, Philip</au><au>Kolomiets, Michael V.</au><au>Yuan, Joshua S.</au><au>Scully, Marlan O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-03-28</date><risdate>2017</risdate><volume>114</volume><issue>13</issue><spage>3393</spage><epage>3396</epage><pages>3393-3396</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28289201</pmid><doi>10.1073/pnas.1701328114</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (13), p.3393-3396
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5380084
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects abiotic stress
Adaptation, Physiological
anthocyanins
Antioxidants
Biological Sciences
carotenoids
Coleus - chemistry
Coleus - physiology
Correlation analysis
diagnostic techniques
Drought
Droughts
Flowers & plants
Genotype & phenotype
phenotype
Physical Sciences
Pigments
plant stress
Plectranthus scutellarioides
Raman spectroscopy
Salinity
Soil - chemistry
soil salinity
Spectrum Analysis, Raman - methods
stress response
title In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A10%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20diagnostics%20of%20early%20abiotic%20plant%20stress%20response%20via%20Raman%20spectroscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Altangerel,%20Narangerel&rft.date=2017-03-28&rft.volume=114&rft.issue=13&rft.spage=3393&rft.epage=3396&rft.pages=3393-3396&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1701328114&rft_dat=%3Cjstor_pubme%3E26480335%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885233757&rft_id=info:pmid/28289201&rft_jstor_id=26480335&rfr_iscdi=true