Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52
Castration‐resistant prostate cancer (CRPC) is the emergence of prostate cancer cells that have adapted to the androgen‐depleted environment of the prostate. In recent years, targeting multiple chaperones and co‐chaperones (e.g., Hsp27, FKBP52) that promote androgen receptor (AR) signaling and/or no...
Gespeichert in:
Veröffentlicht in: | Molecular oncology 2017-04, Vol.11 (4), p.337-357 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 4 |
container_start_page | 337 |
container_title | Molecular oncology |
container_volume | 11 |
creator | Joshi, Jugal Bharat Patel, Divya Morton, Derrick J. Sharma, Pankaj Zou, Jin Hewa Bostanthirige, Dhanushka Gorantla, Yamini Nagappan, Peri Komaragiri, Shravan Kumar Sivils, Jeffrey C. Xie, Huan Palaniappan, Ravi Wang, Guangdi Cox, Marc B. Chaudhary, Jaideep |
description | Castration‐resistant prostate cancer (CRPC) is the emergence of prostate cancer cells that have adapted to the androgen‐depleted environment of the prostate. In recent years, targeting multiple chaperones and co‐chaperones (e.g., Hsp27, FKBP52) that promote androgen receptor (AR) signaling and/or novel AR regulatory mechanisms have emerged as promising alternative treatments for CRPC. We have shown that inactivation of inhibitor of differentiation 4 (ID4), a dominant‐negative helix loop helix protein, promotes de novo steroidogenesis and CRPC with a gene expression signature that resembles constitutive AR activity in castrated mice. In this study, we investigated the underlying mechanism through which loss of ID4 potentiates AR signaling. Proteomic analysis between prostate cancer cell line LNCaP (L+ns) and LNCaP lacking ID4 (L(−)ID4) revealed elevated levels of Hsp27 and FKBP52, suggesting a role for these AR‐associated co‐chaperones in promoting constitutively active AR signaling in L(−)ID4 cells. Interestingly, protein interaction studies demonstrated a direct interaction between ID4 and the 52‐kDa FK506‐binding protein (FKBP52) in vitro, but not with AR. An increase in FKBP52‐dependent AR transcriptional activity was observed in L(−)ID4 cells. Moreover, pharmacological inhibition of FKBP52‐AR signaling, by treatment with MJC13, attenuated the tumor growth, weight, and volume in L(−)ID4 xenografts. Together, our results demonstrate that ID4 selectively regulates AR activity through direct interaction with FKBP52, and its loss, promotes CRPC through FKBP52‐mediated AR signaling.
Androgen receptor (AR) signaling plays a critical role in the progression of prostate cancer. Here, we demonstrate that loss of ID4, an important tumor suppressor that is epigenetically silenced in prostate cancer, promotes castration‐resistant prostate cancer (CRPC) by potentiating FKBP52‐AR signaling. Thus, targeting FKBP52–AR interaction with small‐molecule inhibitor MJC13 blocks tumor growth in an in vivo CRPC model. |
doi_str_mv | 10.1002/1878-0261.12028 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5378613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731950715</galeid><sourcerecordid>A731950715</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4218-304900540f88a0afb31875f111e232917f29d56526045a1fe782d7a0c360be1d3</originalsourceid><addsrcrecordid>eNptkk1r3DAQhkVoaT7ac29F0Esu3moky5Ivge3ma-mWhJDcAkJrS2sF23JtOWH_fbTZZEmg6KBh5pmXd6RB6DuQCRBCf4EUMiE0gwlQQuUeOthlPsWYizQRMod9dDgMD4TwLM_yL2ifSsqpZPQA3c9bXQT3qIPzLfYWz09T3PW-8cEMWOPZzfUMd5VpfVh3Bj-5UOHCt0NwYYxtBk9v8DuBUPV-XFX4_M_va06_os9W14P59nofobvzs9vZZbK4upjPpotklVKQCSNpHr2lxEqpibZLFofgFgAMZTQHYWle8ozTjKRcgzVC0lJoUrCMLA2U7AidbHW7cdmYsjBt6HWtut41ul8rr536WGldpVb-UXEmZAYsChy_CvT-32iGoBo3FKaudWv8OKjohwkKjJOI_tyiK10b5Vrro2KxwdVUMMg5EcAjNfkPFU9pGhffz1gX8x8afrwfYef97acikG2Bp9i53tWBqM0ibBxKtfl29bII6u_Vgr5E7BlIzqJN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873721350</pqid></control><display><type>article</type><title>Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Joshi, Jugal Bharat ; Patel, Divya ; Morton, Derrick J. ; Sharma, Pankaj ; Zou, Jin ; Hewa Bostanthirige, Dhanushka ; Gorantla, Yamini ; Nagappan, Peri ; Komaragiri, Shravan Kumar ; Sivils, Jeffrey C. ; Xie, Huan ; Palaniappan, Ravi ; Wang, Guangdi ; Cox, Marc B. ; Chaudhary, Jaideep</creator><creatorcontrib>Joshi, Jugal Bharat ; Patel, Divya ; Morton, Derrick J. ; Sharma, Pankaj ; Zou, Jin ; Hewa Bostanthirige, Dhanushka ; Gorantla, Yamini ; Nagappan, Peri ; Komaragiri, Shravan Kumar ; Sivils, Jeffrey C. ; Xie, Huan ; Palaniappan, Ravi ; Wang, Guangdi ; Cox, Marc B. ; Chaudhary, Jaideep</creatorcontrib><description>Castration‐resistant prostate cancer (CRPC) is the emergence of prostate cancer cells that have adapted to the androgen‐depleted environment of the prostate. In recent years, targeting multiple chaperones and co‐chaperones (e.g., Hsp27, FKBP52) that promote androgen receptor (AR) signaling and/or novel AR regulatory mechanisms have emerged as promising alternative treatments for CRPC. We have shown that inactivation of inhibitor of differentiation 4 (ID4), a dominant‐negative helix loop helix protein, promotes de novo steroidogenesis and CRPC with a gene expression signature that resembles constitutive AR activity in castrated mice. In this study, we investigated the underlying mechanism through which loss of ID4 potentiates AR signaling. Proteomic analysis between prostate cancer cell line LNCaP (L+ns) and LNCaP lacking ID4 (L(−)ID4) revealed elevated levels of Hsp27 and FKBP52, suggesting a role for these AR‐associated co‐chaperones in promoting constitutively active AR signaling in L(−)ID4 cells. Interestingly, protein interaction studies demonstrated a direct interaction between ID4 and the 52‐kDa FK506‐binding protein (FKBP52) in vitro, but not with AR. An increase in FKBP52‐dependent AR transcriptional activity was observed in L(−)ID4 cells. Moreover, pharmacological inhibition of FKBP52‐AR signaling, by treatment with MJC13, attenuated the tumor growth, weight, and volume in L(−)ID4 xenografts. Together, our results demonstrate that ID4 selectively regulates AR activity through direct interaction with FKBP52, and its loss, promotes CRPC through FKBP52‐mediated AR signaling.
Androgen receptor (AR) signaling plays a critical role in the progression of prostate cancer. Here, we demonstrate that loss of ID4, an important tumor suppressor that is epigenetically silenced in prostate cancer, promotes castration‐resistant prostate cancer (CRPC) by potentiating FKBP52‐AR signaling. Thus, targeting FKBP52–AR interaction with small‐molecule inhibitor MJC13 blocks tumor growth in an in vivo CRPC model.</description><identifier>ISSN: 1574-7891</identifier><identifier>EISSN: 1878-0261</identifier><identifier>DOI: 10.1002/1878-0261.12028</identifier><identifier>PMID: 28252832</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>androgen receptor ; Androgens ; Anilides - pharmacology ; Animals ; Biotechnology industry ; castration‐resistant ; Cell Line, Tumor ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cyclohexanes - pharmacology ; FKBP51 ; FKBP52 ; Gene expression ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Knockdown Techniques ; Genetic aspects ; Heat shock proteins ; HLH ; Hsp27 ; HSP27 Heat-Shock Proteins - metabolism ; Hsp90 ; Humans ; ID4 ; Immunohistochemistry ; Inhibitor of Differentiation Proteins - metabolism ; Male ; Mice, SCID ; MJC13 ; Neoplasm Proteins - metabolism ; Phenotype ; Prostate cancer ; Prostatic Neoplasms, Castration-Resistant - metabolism ; Prostatic Neoplasms, Castration-Resistant - pathology ; Protein binding ; Protein Binding - drug effects ; Protein Transport - drug effects ; PSA ; Receptors, Androgen - metabolism ; Tacrolimus Binding Proteins - metabolism ; Transcriptional Activation - drug effects ; Transcriptional Activation - genetics ; Xenograft Model Antitumor Assays</subject><ispartof>Molecular oncology, 2017-04, Vol.11 (4), p.337-357</ispartof><rights>2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378613/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378613/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28252832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joshi, Jugal Bharat</creatorcontrib><creatorcontrib>Patel, Divya</creatorcontrib><creatorcontrib>Morton, Derrick J.</creatorcontrib><creatorcontrib>Sharma, Pankaj</creatorcontrib><creatorcontrib>Zou, Jin</creatorcontrib><creatorcontrib>Hewa Bostanthirige, Dhanushka</creatorcontrib><creatorcontrib>Gorantla, Yamini</creatorcontrib><creatorcontrib>Nagappan, Peri</creatorcontrib><creatorcontrib>Komaragiri, Shravan Kumar</creatorcontrib><creatorcontrib>Sivils, Jeffrey C.</creatorcontrib><creatorcontrib>Xie, Huan</creatorcontrib><creatorcontrib>Palaniappan, Ravi</creatorcontrib><creatorcontrib>Wang, Guangdi</creatorcontrib><creatorcontrib>Cox, Marc B.</creatorcontrib><creatorcontrib>Chaudhary, Jaideep</creatorcontrib><title>Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52</title><title>Molecular oncology</title><addtitle>Mol Oncol</addtitle><description>Castration‐resistant prostate cancer (CRPC) is the emergence of prostate cancer cells that have adapted to the androgen‐depleted environment of the prostate. In recent years, targeting multiple chaperones and co‐chaperones (e.g., Hsp27, FKBP52) that promote androgen receptor (AR) signaling and/or novel AR regulatory mechanisms have emerged as promising alternative treatments for CRPC. We have shown that inactivation of inhibitor of differentiation 4 (ID4), a dominant‐negative helix loop helix protein, promotes de novo steroidogenesis and CRPC with a gene expression signature that resembles constitutive AR activity in castrated mice. In this study, we investigated the underlying mechanism through which loss of ID4 potentiates AR signaling. Proteomic analysis between prostate cancer cell line LNCaP (L+ns) and LNCaP lacking ID4 (L(−)ID4) revealed elevated levels of Hsp27 and FKBP52, suggesting a role for these AR‐associated co‐chaperones in promoting constitutively active AR signaling in L(−)ID4 cells. Interestingly, protein interaction studies demonstrated a direct interaction between ID4 and the 52‐kDa FK506‐binding protein (FKBP52) in vitro, but not with AR. An increase in FKBP52‐dependent AR transcriptional activity was observed in L(−)ID4 cells. Moreover, pharmacological inhibition of FKBP52‐AR signaling, by treatment with MJC13, attenuated the tumor growth, weight, and volume in L(−)ID4 xenografts. Together, our results demonstrate that ID4 selectively regulates AR activity through direct interaction with FKBP52, and its loss, promotes CRPC through FKBP52‐mediated AR signaling.
Androgen receptor (AR) signaling plays a critical role in the progression of prostate cancer. Here, we demonstrate that loss of ID4, an important tumor suppressor that is epigenetically silenced in prostate cancer, promotes castration‐resistant prostate cancer (CRPC) by potentiating FKBP52‐AR signaling. Thus, targeting FKBP52–AR interaction with small‐molecule inhibitor MJC13 blocks tumor growth in an in vivo CRPC model.</description><subject>androgen receptor</subject><subject>Androgens</subject><subject>Anilides - pharmacology</subject><subject>Animals</subject><subject>Biotechnology industry</subject><subject>castration‐resistant</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cyclohexanes - pharmacology</subject><subject>FKBP51</subject><subject>FKBP52</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>Genetic aspects</subject><subject>Heat shock proteins</subject><subject>HLH</subject><subject>Hsp27</subject><subject>HSP27 Heat-Shock Proteins - metabolism</subject><subject>Hsp90</subject><subject>Humans</subject><subject>ID4</subject><subject>Immunohistochemistry</subject><subject>Inhibitor of Differentiation Proteins - metabolism</subject><subject>Male</subject><subject>Mice, SCID</subject><subject>MJC13</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Phenotype</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms, Castration-Resistant - metabolism</subject><subject>Prostatic Neoplasms, Castration-Resistant - pathology</subject><subject>Protein binding</subject><subject>Protein Binding - drug effects</subject><subject>Protein Transport - drug effects</subject><subject>PSA</subject><subject>Receptors, Androgen - metabolism</subject><subject>Tacrolimus Binding Proteins - metabolism</subject><subject>Transcriptional Activation - drug effects</subject><subject>Transcriptional Activation - genetics</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1574-7891</issn><issn>1878-0261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNptkk1r3DAQhkVoaT7ac29F0Esu3moky5Ivge3ma-mWhJDcAkJrS2sF23JtOWH_fbTZZEmg6KBh5pmXd6RB6DuQCRBCf4EUMiE0gwlQQuUeOthlPsWYizQRMod9dDgMD4TwLM_yL2ifSsqpZPQA3c9bXQT3qIPzLfYWz09T3PW-8cEMWOPZzfUMd5VpfVh3Bj-5UOHCt0NwYYxtBk9v8DuBUPV-XFX4_M_va06_os9W14P59nofobvzs9vZZbK4upjPpotklVKQCSNpHr2lxEqpibZLFofgFgAMZTQHYWle8ozTjKRcgzVC0lJoUrCMLA2U7AidbHW7cdmYsjBt6HWtut41ul8rr536WGldpVb-UXEmZAYsChy_CvT-32iGoBo3FKaudWv8OKjohwkKjJOI_tyiK10b5Vrro2KxwdVUMMg5EcAjNfkPFU9pGhffz1gX8x8afrwfYef97acikG2Bp9i53tWBqM0ibBxKtfl29bII6u_Vgr5E7BlIzqJN</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Joshi, Jugal Bharat</creator><creator>Patel, Divya</creator><creator>Morton, Derrick J.</creator><creator>Sharma, Pankaj</creator><creator>Zou, Jin</creator><creator>Hewa Bostanthirige, Dhanushka</creator><creator>Gorantla, Yamini</creator><creator>Nagappan, Peri</creator><creator>Komaragiri, Shravan Kumar</creator><creator>Sivils, Jeffrey C.</creator><creator>Xie, Huan</creator><creator>Palaniappan, Ravi</creator><creator>Wang, Guangdi</creator><creator>Cox, Marc B.</creator><creator>Chaudhary, Jaideep</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201704</creationdate><title>Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52</title><author>Joshi, Jugal Bharat ; Patel, Divya ; Morton, Derrick J. ; Sharma, Pankaj ; Zou, Jin ; Hewa Bostanthirige, Dhanushka ; Gorantla, Yamini ; Nagappan, Peri ; Komaragiri, Shravan Kumar ; Sivils, Jeffrey C. ; Xie, Huan ; Palaniappan, Ravi ; Wang, Guangdi ; Cox, Marc B. ; Chaudhary, Jaideep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4218-304900540f88a0afb31875f111e232917f29d56526045a1fe782d7a0c360be1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>androgen receptor</topic><topic>Androgens</topic><topic>Anilides - pharmacology</topic><topic>Animals</topic><topic>Biotechnology industry</topic><topic>castration‐resistant</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cyclohexanes - pharmacology</topic><topic>FKBP51</topic><topic>FKBP52</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>Genetic aspects</topic><topic>Heat shock proteins</topic><topic>HLH</topic><topic>Hsp27</topic><topic>HSP27 Heat-Shock Proteins - metabolism</topic><topic>Hsp90</topic><topic>Humans</topic><topic>ID4</topic><topic>Immunohistochemistry</topic><topic>Inhibitor of Differentiation Proteins - metabolism</topic><topic>Male</topic><topic>Mice, SCID</topic><topic>MJC13</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Phenotype</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms, Castration-Resistant - metabolism</topic><topic>Prostatic Neoplasms, Castration-Resistant - pathology</topic><topic>Protein binding</topic><topic>Protein Binding - drug effects</topic><topic>Protein Transport - drug effects</topic><topic>PSA</topic><topic>Receptors, Androgen - metabolism</topic><topic>Tacrolimus Binding Proteins - metabolism</topic><topic>Transcriptional Activation - drug effects</topic><topic>Transcriptional Activation - genetics</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Jugal Bharat</creatorcontrib><creatorcontrib>Patel, Divya</creatorcontrib><creatorcontrib>Morton, Derrick J.</creatorcontrib><creatorcontrib>Sharma, Pankaj</creatorcontrib><creatorcontrib>Zou, Jin</creatorcontrib><creatorcontrib>Hewa Bostanthirige, Dhanushka</creatorcontrib><creatorcontrib>Gorantla, Yamini</creatorcontrib><creatorcontrib>Nagappan, Peri</creatorcontrib><creatorcontrib>Komaragiri, Shravan Kumar</creatorcontrib><creatorcontrib>Sivils, Jeffrey C.</creatorcontrib><creatorcontrib>Xie, Huan</creatorcontrib><creatorcontrib>Palaniappan, Ravi</creatorcontrib><creatorcontrib>Wang, Guangdi</creatorcontrib><creatorcontrib>Cox, Marc B.</creatorcontrib><creatorcontrib>Chaudhary, Jaideep</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Jugal Bharat</au><au>Patel, Divya</au><au>Morton, Derrick J.</au><au>Sharma, Pankaj</au><au>Zou, Jin</au><au>Hewa Bostanthirige, Dhanushka</au><au>Gorantla, Yamini</au><au>Nagappan, Peri</au><au>Komaragiri, Shravan Kumar</au><au>Sivils, Jeffrey C.</au><au>Xie, Huan</au><au>Palaniappan, Ravi</au><au>Wang, Guangdi</au><au>Cox, Marc B.</au><au>Chaudhary, Jaideep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52</atitle><jtitle>Molecular oncology</jtitle><addtitle>Mol Oncol</addtitle><date>2017-04</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>337</spage><epage>357</epage><pages>337-357</pages><issn>1574-7891</issn><eissn>1878-0261</eissn><abstract>Castration‐resistant prostate cancer (CRPC) is the emergence of prostate cancer cells that have adapted to the androgen‐depleted environment of the prostate. In recent years, targeting multiple chaperones and co‐chaperones (e.g., Hsp27, FKBP52) that promote androgen receptor (AR) signaling and/or novel AR regulatory mechanisms have emerged as promising alternative treatments for CRPC. We have shown that inactivation of inhibitor of differentiation 4 (ID4), a dominant‐negative helix loop helix protein, promotes de novo steroidogenesis and CRPC with a gene expression signature that resembles constitutive AR activity in castrated mice. In this study, we investigated the underlying mechanism through which loss of ID4 potentiates AR signaling. Proteomic analysis between prostate cancer cell line LNCaP (L+ns) and LNCaP lacking ID4 (L(−)ID4) revealed elevated levels of Hsp27 and FKBP52, suggesting a role for these AR‐associated co‐chaperones in promoting constitutively active AR signaling in L(−)ID4 cells. Interestingly, protein interaction studies demonstrated a direct interaction between ID4 and the 52‐kDa FK506‐binding protein (FKBP52) in vitro, but not with AR. An increase in FKBP52‐dependent AR transcriptional activity was observed in L(−)ID4 cells. Moreover, pharmacological inhibition of FKBP52‐AR signaling, by treatment with MJC13, attenuated the tumor growth, weight, and volume in L(−)ID4 xenografts. Together, our results demonstrate that ID4 selectively regulates AR activity through direct interaction with FKBP52, and its loss, promotes CRPC through FKBP52‐mediated AR signaling.
Androgen receptor (AR) signaling plays a critical role in the progression of prostate cancer. Here, we demonstrate that loss of ID4, an important tumor suppressor that is epigenetically silenced in prostate cancer, promotes castration‐resistant prostate cancer (CRPC) by potentiating FKBP52‐AR signaling. Thus, targeting FKBP52–AR interaction with small‐molecule inhibitor MJC13 blocks tumor growth in an in vivo CRPC model.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>28252832</pmid><doi>10.1002/1878-0261.12028</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-7891 |
ispartof | Molecular oncology, 2017-04, Vol.11 (4), p.337-357 |
issn | 1574-7891 1878-0261 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5378613 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | androgen receptor Androgens Anilides - pharmacology Animals Biotechnology industry castration‐resistant Cell Line, Tumor Cell Nucleus - drug effects Cell Nucleus - metabolism Cyclohexanes - pharmacology FKBP51 FKBP52 Gene expression Gene Expression Regulation, Neoplastic - drug effects Gene Knockdown Techniques Genetic aspects Heat shock proteins HLH Hsp27 HSP27 Heat-Shock Proteins - metabolism Hsp90 Humans ID4 Immunohistochemistry Inhibitor of Differentiation Proteins - metabolism Male Mice, SCID MJC13 Neoplasm Proteins - metabolism Phenotype Prostate cancer Prostatic Neoplasms, Castration-Resistant - metabolism Prostatic Neoplasms, Castration-Resistant - pathology Protein binding Protein Binding - drug effects Protein Transport - drug effects PSA Receptors, Androgen - metabolism Tacrolimus Binding Proteins - metabolism Transcriptional Activation - drug effects Transcriptional Activation - genetics Xenograft Model Antitumor Assays |
title | Inactivation of ID4 promotes a CRPC phenotype with constitutive AR activation through FKBP52 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inactivation%20of%20ID4%20promotes%20a%20CRPC%20phenotype%20with%20constitutive%20AR%20activation%20through%20FKBP52&rft.jtitle=Molecular%20oncology&rft.au=Joshi,%20Jugal%20Bharat&rft.date=2017-04&rft.volume=11&rft.issue=4&rft.spage=337&rft.epage=357&rft.pages=337-357&rft.issn=1574-7891&rft.eissn=1878-0261&rft_id=info:doi/10.1002/1878-0261.12028&rft_dat=%3Cgale_pubme%3EA731950715%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1873721350&rft_id=info:pmid/28252832&rft_galeid=A731950715&rfr_iscdi=true |