Endothelial Cell–Specific Expression of Roundabout 4 Is Regulated by Differential DNA Methylation of the Proximal Promoter
OBJECTIVE—The molecular basis of endothelial cell (EC)–specific gene expression is poorly understood. Roundabout 4 (Robo4) is expressed exclusively in ECs. We previously reported that the 3-kb 5′-flanking region of the human Robo4 gene contains information for lineage-specific expression in the ECs....
Gespeichert in:
Veröffentlicht in: | Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2014-07, Vol.34 (7), p.1531-1538 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1538 |
---|---|
container_issue | 7 |
container_start_page | 1531 |
container_title | Arteriosclerosis, thrombosis, and vascular biology |
container_volume | 34 |
creator | Okada, Yoshiaki Funahashi, Nobuaki Tanaka, Toru Nishiyama, Yuji Yuan, Lei Shirakura, Keisuke Turjman, Alexis S Kano, Yoshihiro Naruse, Hiroki Suzuki, Ayano Sakai, Miki Zhixia, Jiang Kitajima, Kenji Ishimoto, Kenji Hino, Nobumasa Kondoh, Masuo Mukai, Yohei Nakagawa, Shinsaku García-Cardeña, Guillermo Aird, William C Doi, Takefumi |
description | OBJECTIVE—The molecular basis of endothelial cell (EC)–specific gene expression is poorly understood. Roundabout 4 (Robo4) is expressed exclusively in ECs. We previously reported that the 3-kb 5′-flanking region of the human Robo4 gene contains information for lineage-specific expression in the ECs. Our studies implicated a critical role for GA-binding protein and specificity protein 1 (SP1) in mediating overall expression levels. However, these transcription factors are also expressed in non-ECs. In this study, we tested the hypothesis that epigenetic mechanisms contribute to EC-specific Robo4 gene expression.
METHODS AND RESULTS—Bisulfite sequencing analysis indicated that the proximal promoter of Robo4 is methylated in non-ECs but not in ECs. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine increased Robo4 gene expression in non-ECs but not in ECs. Proximal promoter methylation significantly decreased the promoter activity in ECs. Electrophoretic mobility shift assays showed that DNA methylation of the proximal promoter inhibited SP1 binding to the −42 SP1 site. In DNase hypersensitivity assays, chromatin condensation of the Robo4 promoter was observed in some but not all nonexpressing cell types. In Hprt (hypoxanthine phosphoribosyltransferase)-targeted mice, a 0.3-kb proximal promoter directed cell-type–specific expression in the endothelium. Bisulfite sequencing analysis using embryonic stem cell–derived mesodermal cells and ECs indicated that the EC-specific methylation pattern of the promoter is determined by demethylation during differentiation and that binding of GA-binding protein and SP1 to the proximal promoter is not essential for demethylation.
CONCLUSIONS—The EC-specific DNA methylation pattern of the Robo4 proximal promoter is determined during cell differentiation and contributes to regulation of EC-specific Robo4 gene expression. |
doi_str_mv | 10.1161/ATVBAHA.114.303818 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5378492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24855053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5158-27babe98b52ed5f5a5fd2a162580f30a3a598e9cca022db86b8f690cb1ed63e23</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIhMAPcED-gQl-r-eCNGwWEikhKASulmemnRnwjlf2TJKVcsg_8Id8SbzaTQQXTt2t6qpqdSH0lpJDShV9X13--FgdV3kQh5xwTfUztE8lE4VQXD3PPZmVhVSC7aFXKf0khAjGyEu0x4SWkki-j-4WQxvGDnxvPZ6D93_uf39bQdO7vsGL21WElPow4ODwRZiG1tZhGrHAJwlfwNXk7Qgtrtf4qHcOIgzjRufoS4XPYOzWGd6RswX-GsNtv8x4bpZhhPgavXDWJ3izqwfo-6fF5fy4OD3_fDKvTotGUqkLNqttDaWuJYNWOmmla5mliklNHCeWW1lqKJvGEsbaWqtaO1WSpqbQKg6MH6APW93VVC-hbfKZ0XqzivmauDbB9uZfZOg7cxWujeQzLcqNANsKNDGkFME9cSkxmyzMLos8CLPNIpPe_e36RHl8fl5Q24Wb4PM30i8_3UA0HVg_dv9TfgBwPJsB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Endothelial Cell–Specific Expression of Roundabout 4 Is Regulated by Differential DNA Methylation of the Proximal Promoter</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Okada, Yoshiaki ; Funahashi, Nobuaki ; Tanaka, Toru ; Nishiyama, Yuji ; Yuan, Lei ; Shirakura, Keisuke ; Turjman, Alexis S ; Kano, Yoshihiro ; Naruse, Hiroki ; Suzuki, Ayano ; Sakai, Miki ; Zhixia, Jiang ; Kitajima, Kenji ; Ishimoto, Kenji ; Hino, Nobumasa ; Kondoh, Masuo ; Mukai, Yohei ; Nakagawa, Shinsaku ; García-Cardeña, Guillermo ; Aird, William C ; Doi, Takefumi</creator><creatorcontrib>Okada, Yoshiaki ; Funahashi, Nobuaki ; Tanaka, Toru ; Nishiyama, Yuji ; Yuan, Lei ; Shirakura, Keisuke ; Turjman, Alexis S ; Kano, Yoshihiro ; Naruse, Hiroki ; Suzuki, Ayano ; Sakai, Miki ; Zhixia, Jiang ; Kitajima, Kenji ; Ishimoto, Kenji ; Hino, Nobumasa ; Kondoh, Masuo ; Mukai, Yohei ; Nakagawa, Shinsaku ; García-Cardeña, Guillermo ; Aird, William C ; Doi, Takefumi</creatorcontrib><description>OBJECTIVE—The molecular basis of endothelial cell (EC)–specific gene expression is poorly understood. Roundabout 4 (Robo4) is expressed exclusively in ECs. We previously reported that the 3-kb 5′-flanking region of the human Robo4 gene contains information for lineage-specific expression in the ECs. Our studies implicated a critical role for GA-binding protein and specificity protein 1 (SP1) in mediating overall expression levels. However, these transcription factors are also expressed in non-ECs. In this study, we tested the hypothesis that epigenetic mechanisms contribute to EC-specific Robo4 gene expression.
METHODS AND RESULTS—Bisulfite sequencing analysis indicated that the proximal promoter of Robo4 is methylated in non-ECs but not in ECs. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine increased Robo4 gene expression in non-ECs but not in ECs. Proximal promoter methylation significantly decreased the promoter activity in ECs. Electrophoretic mobility shift assays showed that DNA methylation of the proximal promoter inhibited SP1 binding to the −42 SP1 site. In DNase hypersensitivity assays, chromatin condensation of the Robo4 promoter was observed in some but not all nonexpressing cell types. In Hprt (hypoxanthine phosphoribosyltransferase)-targeted mice, a 0.3-kb proximal promoter directed cell-type–specific expression in the endothelium. Bisulfite sequencing analysis using embryonic stem cell–derived mesodermal cells and ECs indicated that the EC-specific methylation pattern of the promoter is determined by demethylation during differentiation and that binding of GA-binding protein and SP1 to the proximal promoter is not essential for demethylation.
CONCLUSIONS—The EC-specific DNA methylation pattern of the Robo4 proximal promoter is determined during cell differentiation and contributes to regulation of EC-specific Robo4 gene expression.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.114.303818</identifier><identifier>PMID: 24855053</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Animals ; Binding Sites ; Cell Differentiation ; Cell Lineage ; Chromatin Assembly and Disassembly ; DNA Methylation - drug effects ; DNA Modification Methylases - antagonists & inhibitors ; DNA Modification Methylases - metabolism ; Embryonic Stem Cells - metabolism ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Enzyme Inhibitors - pharmacology ; Epigenesis, Genetic - drug effects ; Fibroblasts - metabolism ; Gene Expression Regulation, Developmental ; HEK293 Cells ; Humans ; Hypoxanthine Phosphoribosyltransferase - genetics ; Hypoxanthine Phosphoribosyltransferase - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Myocytes, Smooth Muscle - metabolism ; Promoter Regions, Genetic - drug effects ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Sp1 Transcription Factor - metabolism ; Transfection</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2014-07, Vol.34 (7), p.1531-1538</ispartof><rights>2014 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5158-27babe98b52ed5f5a5fd2a162580f30a3a598e9cca022db86b8f690cb1ed63e23</citedby><cites>FETCH-LOGICAL-c5158-27babe98b52ed5f5a5fd2a162580f30a3a598e9cca022db86b8f690cb1ed63e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24855053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okada, Yoshiaki</creatorcontrib><creatorcontrib>Funahashi, Nobuaki</creatorcontrib><creatorcontrib>Tanaka, Toru</creatorcontrib><creatorcontrib>Nishiyama, Yuji</creatorcontrib><creatorcontrib>Yuan, Lei</creatorcontrib><creatorcontrib>Shirakura, Keisuke</creatorcontrib><creatorcontrib>Turjman, Alexis S</creatorcontrib><creatorcontrib>Kano, Yoshihiro</creatorcontrib><creatorcontrib>Naruse, Hiroki</creatorcontrib><creatorcontrib>Suzuki, Ayano</creatorcontrib><creatorcontrib>Sakai, Miki</creatorcontrib><creatorcontrib>Zhixia, Jiang</creatorcontrib><creatorcontrib>Kitajima, Kenji</creatorcontrib><creatorcontrib>Ishimoto, Kenji</creatorcontrib><creatorcontrib>Hino, Nobumasa</creatorcontrib><creatorcontrib>Kondoh, Masuo</creatorcontrib><creatorcontrib>Mukai, Yohei</creatorcontrib><creatorcontrib>Nakagawa, Shinsaku</creatorcontrib><creatorcontrib>García-Cardeña, Guillermo</creatorcontrib><creatorcontrib>Aird, William C</creatorcontrib><creatorcontrib>Doi, Takefumi</creatorcontrib><title>Endothelial Cell–Specific Expression of Roundabout 4 Is Regulated by Differential DNA Methylation of the Proximal Promoter</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—The molecular basis of endothelial cell (EC)–specific gene expression is poorly understood. Roundabout 4 (Robo4) is expressed exclusively in ECs. We previously reported that the 3-kb 5′-flanking region of the human Robo4 gene contains information for lineage-specific expression in the ECs. Our studies implicated a critical role for GA-binding protein and specificity protein 1 (SP1) in mediating overall expression levels. However, these transcription factors are also expressed in non-ECs. In this study, we tested the hypothesis that epigenetic mechanisms contribute to EC-specific Robo4 gene expression.
METHODS AND RESULTS—Bisulfite sequencing analysis indicated that the proximal promoter of Robo4 is methylated in non-ECs but not in ECs. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine increased Robo4 gene expression in non-ECs but not in ECs. Proximal promoter methylation significantly decreased the promoter activity in ECs. Electrophoretic mobility shift assays showed that DNA methylation of the proximal promoter inhibited SP1 binding to the −42 SP1 site. In DNase hypersensitivity assays, chromatin condensation of the Robo4 promoter was observed in some but not all nonexpressing cell types. In Hprt (hypoxanthine phosphoribosyltransferase)-targeted mice, a 0.3-kb proximal promoter directed cell-type–specific expression in the endothelium. Bisulfite sequencing analysis using embryonic stem cell–derived mesodermal cells and ECs indicated that the EC-specific methylation pattern of the promoter is determined by demethylation during differentiation and that binding of GA-binding protein and SP1 to the proximal promoter is not essential for demethylation.
CONCLUSIONS—The EC-specific DNA methylation pattern of the Robo4 proximal promoter is determined during cell differentiation and contributes to regulation of EC-specific Robo4 gene expression.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Cell Differentiation</subject><subject>Cell Lineage</subject><subject>Chromatin Assembly and Disassembly</subject><subject>DNA Methylation - drug effects</subject><subject>DNA Modification Methylases - antagonists & inhibitors</subject><subject>DNA Modification Methylases - metabolism</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Epigenesis, Genetic - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Gene Expression Regulation, Developmental</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Hypoxanthine Phosphoribosyltransferase - genetics</subject><subject>Hypoxanthine Phosphoribosyltransferase - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Myocytes, Smooth Muscle - metabolism</subject><subject>Promoter Regions, Genetic - drug effects</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Sp1 Transcription Factor - metabolism</subject><subject>Transfection</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctuFDEQtBCIhMAPcED-gQl-r-eCNGwWEikhKASulmemnRnwjlf2TJKVcsg_8Id8SbzaTQQXTt2t6qpqdSH0lpJDShV9X13--FgdV3kQh5xwTfUztE8lE4VQXD3PPZmVhVSC7aFXKf0khAjGyEu0x4SWkki-j-4WQxvGDnxvPZ6D93_uf39bQdO7vsGL21WElPow4ODwRZiG1tZhGrHAJwlfwNXk7Qgtrtf4qHcOIgzjRufoS4XPYOzWGd6RswX-GsNtv8x4bpZhhPgavXDWJ3izqwfo-6fF5fy4OD3_fDKvTotGUqkLNqttDaWuJYNWOmmla5mliklNHCeWW1lqKJvGEsbaWqtaO1WSpqbQKg6MH6APW93VVC-hbfKZ0XqzivmauDbB9uZfZOg7cxWujeQzLcqNANsKNDGkFME9cSkxmyzMLos8CLPNIpPe_e36RHl8fl5Q24Wb4PM30i8_3UA0HVg_dv9TfgBwPJsB</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Okada, Yoshiaki</creator><creator>Funahashi, Nobuaki</creator><creator>Tanaka, Toru</creator><creator>Nishiyama, Yuji</creator><creator>Yuan, Lei</creator><creator>Shirakura, Keisuke</creator><creator>Turjman, Alexis S</creator><creator>Kano, Yoshihiro</creator><creator>Naruse, Hiroki</creator><creator>Suzuki, Ayano</creator><creator>Sakai, Miki</creator><creator>Zhixia, Jiang</creator><creator>Kitajima, Kenji</creator><creator>Ishimoto, Kenji</creator><creator>Hino, Nobumasa</creator><creator>Kondoh, Masuo</creator><creator>Mukai, Yohei</creator><creator>Nakagawa, Shinsaku</creator><creator>García-Cardeña, Guillermo</creator><creator>Aird, William C</creator><creator>Doi, Takefumi</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>201407</creationdate><title>Endothelial Cell–Specific Expression of Roundabout 4 Is Regulated by Differential DNA Methylation of the Proximal Promoter</title><author>Okada, Yoshiaki ; Funahashi, Nobuaki ; Tanaka, Toru ; Nishiyama, Yuji ; Yuan, Lei ; Shirakura, Keisuke ; Turjman, Alexis S ; Kano, Yoshihiro ; Naruse, Hiroki ; Suzuki, Ayano ; Sakai, Miki ; Zhixia, Jiang ; Kitajima, Kenji ; Ishimoto, Kenji ; Hino, Nobumasa ; Kondoh, Masuo ; Mukai, Yohei ; Nakagawa, Shinsaku ; García-Cardeña, Guillermo ; Aird, William C ; Doi, Takefumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5158-27babe98b52ed5f5a5fd2a162580f30a3a598e9cca022db86b8f690cb1ed63e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Cell Differentiation</topic><topic>Cell Lineage</topic><topic>Chromatin Assembly and Disassembly</topic><topic>DNA Methylation - drug effects</topic><topic>DNA Modification Methylases - antagonists & inhibitors</topic><topic>DNA Modification Methylases - metabolism</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Epigenesis, Genetic - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Gene Expression Regulation, Developmental</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Hypoxanthine Phosphoribosyltransferase - genetics</topic><topic>Hypoxanthine Phosphoribosyltransferase - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Myocytes, Smooth Muscle - metabolism</topic><topic>Promoter Regions, Genetic - drug effects</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Sp1 Transcription Factor - metabolism</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okada, Yoshiaki</creatorcontrib><creatorcontrib>Funahashi, Nobuaki</creatorcontrib><creatorcontrib>Tanaka, Toru</creatorcontrib><creatorcontrib>Nishiyama, Yuji</creatorcontrib><creatorcontrib>Yuan, Lei</creatorcontrib><creatorcontrib>Shirakura, Keisuke</creatorcontrib><creatorcontrib>Turjman, Alexis S</creatorcontrib><creatorcontrib>Kano, Yoshihiro</creatorcontrib><creatorcontrib>Naruse, Hiroki</creatorcontrib><creatorcontrib>Suzuki, Ayano</creatorcontrib><creatorcontrib>Sakai, Miki</creatorcontrib><creatorcontrib>Zhixia, Jiang</creatorcontrib><creatorcontrib>Kitajima, Kenji</creatorcontrib><creatorcontrib>Ishimoto, Kenji</creatorcontrib><creatorcontrib>Hino, Nobumasa</creatorcontrib><creatorcontrib>Kondoh, Masuo</creatorcontrib><creatorcontrib>Mukai, Yohei</creatorcontrib><creatorcontrib>Nakagawa, Shinsaku</creatorcontrib><creatorcontrib>García-Cardeña, Guillermo</creatorcontrib><creatorcontrib>Aird, William C</creatorcontrib><creatorcontrib>Doi, Takefumi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okada, Yoshiaki</au><au>Funahashi, Nobuaki</au><au>Tanaka, Toru</au><au>Nishiyama, Yuji</au><au>Yuan, Lei</au><au>Shirakura, Keisuke</au><au>Turjman, Alexis S</au><au>Kano, Yoshihiro</au><au>Naruse, Hiroki</au><au>Suzuki, Ayano</au><au>Sakai, Miki</au><au>Zhixia, Jiang</au><au>Kitajima, Kenji</au><au>Ishimoto, Kenji</au><au>Hino, Nobumasa</au><au>Kondoh, Masuo</au><au>Mukai, Yohei</au><au>Nakagawa, Shinsaku</au><au>García-Cardeña, Guillermo</au><au>Aird, William C</au><au>Doi, Takefumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endothelial Cell–Specific Expression of Roundabout 4 Is Regulated by Differential DNA Methylation of the Proximal Promoter</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2014-07</date><risdate>2014</risdate><volume>34</volume><issue>7</issue><spage>1531</spage><epage>1538</epage><pages>1531-1538</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>OBJECTIVE—The molecular basis of endothelial cell (EC)–specific gene expression is poorly understood. Roundabout 4 (Robo4) is expressed exclusively in ECs. We previously reported that the 3-kb 5′-flanking region of the human Robo4 gene contains information for lineage-specific expression in the ECs. Our studies implicated a critical role for GA-binding protein and specificity protein 1 (SP1) in mediating overall expression levels. However, these transcription factors are also expressed in non-ECs. In this study, we tested the hypothesis that epigenetic mechanisms contribute to EC-specific Robo4 gene expression.
METHODS AND RESULTS—Bisulfite sequencing analysis indicated that the proximal promoter of Robo4 is methylated in non-ECs but not in ECs. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine increased Robo4 gene expression in non-ECs but not in ECs. Proximal promoter methylation significantly decreased the promoter activity in ECs. Electrophoretic mobility shift assays showed that DNA methylation of the proximal promoter inhibited SP1 binding to the −42 SP1 site. In DNase hypersensitivity assays, chromatin condensation of the Robo4 promoter was observed in some but not all nonexpressing cell types. In Hprt (hypoxanthine phosphoribosyltransferase)-targeted mice, a 0.3-kb proximal promoter directed cell-type–specific expression in the endothelium. Bisulfite sequencing analysis using embryonic stem cell–derived mesodermal cells and ECs indicated that the EC-specific methylation pattern of the promoter is determined by demethylation during differentiation and that binding of GA-binding protein and SP1 to the proximal promoter is not essential for demethylation.
CONCLUSIONS—The EC-specific DNA methylation pattern of the Robo4 proximal promoter is determined during cell differentiation and contributes to regulation of EC-specific Robo4 gene expression.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>24855053</pmid><doi>10.1161/ATVBAHA.114.303818</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-5642 |
ispartof | Arteriosclerosis, thrombosis, and vascular biology, 2014-07, Vol.34 (7), p.1531-1538 |
issn | 1079-5642 1524-4636 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5378492 |
source | MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete |
subjects | Animals Binding Sites Cell Differentiation Cell Lineage Chromatin Assembly and Disassembly DNA Methylation - drug effects DNA Modification Methylases - antagonists & inhibitors DNA Modification Methylases - metabolism Embryonic Stem Cells - metabolism Endothelial Cells - drug effects Endothelial Cells - metabolism Enzyme Inhibitors - pharmacology Epigenesis, Genetic - drug effects Fibroblasts - metabolism Gene Expression Regulation, Developmental HEK293 Cells Humans Hypoxanthine Phosphoribosyltransferase - genetics Hypoxanthine Phosphoribosyltransferase - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Myocytes, Smooth Muscle - metabolism Promoter Regions, Genetic - drug effects Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Sp1 Transcription Factor - metabolism Transfection |
title | Endothelial Cell–Specific Expression of Roundabout 4 Is Regulated by Differential DNA Methylation of the Proximal Promoter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endothelial%20Cell%E2%80%93Specific%20Expression%20of%20Roundabout%204%20Is%20Regulated%20by%20Differential%20DNA%20Methylation%20of%20the%20Proximal%20Promoter&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Okada,%20Yoshiaki&rft.date=2014-07&rft.volume=34&rft.issue=7&rft.spage=1531&rft.epage=1538&rft.pages=1531-1538&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.114.303818&rft_dat=%3Cpubmed_cross%3E24855053%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24855053&rfr_iscdi=true |