How the vortex lattice of a superconductor becomes disordered: a study by scanning tunneling spectroscopy

Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-03, Vol.5 (1), p.9244-9244, Article 9244
1. Verfasser: Zehetmayer, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9244
container_issue 1
container_start_page 9244
container_title Scientific reports
container_volume 5
creator Zehetmayer, M.
description Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor.
doi_str_mv 10.1038/srep09244
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5378196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1664777685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-a1999880bfcfbd5b014e142a37328ebe313281e9741d698bfc1a9b61e1b095273</originalsourceid><addsrcrecordid>eNplkV1LHDEUhkNpqWK96B-QgDdV2DafM4kXgojWgtCb9jokmTPryGwyJhnb_fdmWbts23NzDpyH93y8CH2k5DMlXH3JCSaimRBv0CEjQi4YZ-ztXn2AjnN-JDUk04Lq9-iAyVaJhshDNNzFX7g8AH6OqcBvPNpSBg849tjiPE-QfAzd7EtM2IGPK8i4G3JMHSToLjZQmbs1dmucvQ1hCEtc5hBg3FR5Al9SzD5O6w_oXW_HDMev-Qj9vL35cX23uP_-9dv11f3CSyLKwlKttVLE9b53nXSECqCCWd5ypsABpzVT0K2gXaNVxajVrqFAHdGStfwIXW51p9mtoPMQSrKjmdKwsmltoh3M350wPJhlfDaSt4rqpgp8ehVI8WmGXMxqyB7G0QaIcza0aUTbto2SFT39B32Mcwr1PEOVVg3nFarU2Zby9RXVrn63DCVm46HZeVjZk_3td-QfxypwvgVybYUlpL2R_6m9AGTPp4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898633853</pqid></control><display><type>article</type><title>How the vortex lattice of a superconductor becomes disordered: a study by scanning tunneling spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Zehetmayer, M.</creator><creatorcontrib>Zehetmayer, M.</creatorcontrib><description>Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep09244</identifier><identifier>PMID: 25784605</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/138 ; 639/301/923 ; 639/766/119/1003 ; Defects ; Dislocation ; Humanities and Social Sciences ; Mathematical models ; multidisciplinary ; Scanning ; Science ; Spectroscopy ; Spectrum analysis</subject><ispartof>Scientific reports, 2015-03, Vol.5 (1), p.9244-9244, Article 9244</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Nature Publishing Group Mar 2015</rights><rights>Copyright © 2015, Macmillan Publishers Limited. All rights reserved 2015 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-a1999880bfcfbd5b014e142a37328ebe313281e9741d698bfc1a9b61e1b095273</citedby><cites>FETCH-LOGICAL-c504t-a1999880bfcfbd5b014e142a37328ebe313281e9741d698bfc1a9b61e1b095273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378196/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378196/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,27931,27932,41127,42196,51583,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25784605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zehetmayer, M.</creatorcontrib><title>How the vortex lattice of a superconductor becomes disordered: a study by scanning tunneling spectroscopy</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor.</description><subject>147/138</subject><subject>639/301/923</subject><subject>639/766/119/1003</subject><subject>Defects</subject><subject>Dislocation</subject><subject>Humanities and Social Sciences</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Scanning</subject><subject>Science</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV1LHDEUhkNpqWK96B-QgDdV2DafM4kXgojWgtCb9jokmTPryGwyJhnb_fdmWbts23NzDpyH93y8CH2k5DMlXH3JCSaimRBv0CEjQi4YZ-ztXn2AjnN-JDUk04Lq9-iAyVaJhshDNNzFX7g8AH6OqcBvPNpSBg849tjiPE-QfAzd7EtM2IGPK8i4G3JMHSToLjZQmbs1dmucvQ1hCEtc5hBg3FR5Al9SzD5O6w_oXW_HDMev-Qj9vL35cX23uP_-9dv11f3CSyLKwlKttVLE9b53nXSECqCCWd5ypsABpzVT0K2gXaNVxajVrqFAHdGStfwIXW51p9mtoPMQSrKjmdKwsmltoh3M350wPJhlfDaSt4rqpgp8ehVI8WmGXMxqyB7G0QaIcza0aUTbto2SFT39B32Mcwr1PEOVVg3nFarU2Zby9RXVrn63DCVm46HZeVjZk_3td-QfxypwvgVybYUlpL2R_6m9AGTPp4Q</recordid><startdate>20150318</startdate><enddate>20150318</enddate><creator>Zehetmayer, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20150318</creationdate><title>How the vortex lattice of a superconductor becomes disordered: a study by scanning tunneling spectroscopy</title><author>Zehetmayer, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-a1999880bfcfbd5b014e142a37328ebe313281e9741d698bfc1a9b61e1b095273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>147/138</topic><topic>639/301/923</topic><topic>639/766/119/1003</topic><topic>Defects</topic><topic>Dislocation</topic><topic>Humanities and Social Sciences</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Scanning</topic><topic>Science</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zehetmayer, M.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zehetmayer, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How the vortex lattice of a superconductor becomes disordered: a study by scanning tunneling spectroscopy</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2015-03-18</date><risdate>2015</risdate><volume>5</volume><issue>1</issue><spage>9244</spage><epage>9244</epage><pages>9244-9244</pages><artnum>9244</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Order-disorder transitions take place in many physical systems, but observing them in detail in real materials is difficult. In two- or quasi-two-dimensional systems, the transition has been studied by computer simulations and experimentally in electron sheets, dusty plasmas, colloidal and other systems. Here I show the different stages of defect formation in the vortex lattice of a superconductor while it undergoes an order-disorder transition by presenting real-space images of the lattice from scanning tunneling spectroscopy. When the system evolves from the ordered to the disordered state, the predominant kind of defect changes from dislocation pairs to single dislocations and finally to defect clusters forming grain boundaries. Correlation functions indicate a hexatic-like state preceding the disordered state. The transition in the microscopic vortex distribution is mirrored by the well-known spectacular second peak effect observed in the macroscopic current density of the superconductor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25784605</pmid><doi>10.1038/srep09244</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2015-03, Vol.5 (1), p.9244-9244, Article 9244
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5378196
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 147/138
639/301/923
639/766/119/1003
Defects
Dislocation
Humanities and Social Sciences
Mathematical models
multidisciplinary
Scanning
Science
Spectroscopy
Spectrum analysis
title How the vortex lattice of a superconductor becomes disordered: a study by scanning tunneling spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20the%20vortex%20lattice%20of%20a%20superconductor%20becomes%20disordered:%20a%20study%20by%20scanning%20tunneling%20spectroscopy&rft.jtitle=Scientific%20reports&rft.au=Zehetmayer,%20M.&rft.date=2015-03-18&rft.volume=5&rft.issue=1&rft.spage=9244&rft.epage=9244&rft.pages=9244-9244&rft.artnum=9244&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep09244&rft_dat=%3Cproquest_pubme%3E1664777685%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898633853&rft_id=info:pmid/25784605&rfr_iscdi=true