Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis

During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2017-04, Vol.36 (7), p.854-868
Hauptverfasser: Malyutin, Andrey G, Musalgaonkar, Sharmishtha, Patchett, Stephanie, Frank, Joachim, Johnson, Arlen W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue 7
container_start_page 854
container_title The EMBO journal
container_volume 36
creator Malyutin, Andrey G
Musalgaonkar, Sharmishtha
Patchett, Stephanie
Frank, Joachim
Johnson, Arlen W
description During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo‐electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin–ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1. Synopsis Cryo‐EM structures of the yeast 60S subunit bound to assembly factors Nmd3, Lsg1, and Tif6 reveal the conformational rearrangements that take place during final ribosome maturation in the cytoplasm. Structure of the 60S subunit export adapter Nmd3 and the GTPase Lsg1 at 3.1–4.5 Å resolution. Nmd3 spans the intersubunit interface of the 60S subunit from the L1 stalk through the E and P sites to Tif6. An eIF5A‐like domain of Nmd3 induces closure of the L1 stalk. Nmd3 must retract from the P site to allow binding of Sdo1 and final maturation steps to occur. Activation of Lsg1 GTPase requires both Nmd3 and 60S subunits. Lsg1 binding to helix 69 causes base flipping of G2661. Graphical Abstract Cryo‐EM structures of the yeast 60S subunit bound to assembly factors Nmd3, Lsg1, and Tif6 reveal the conformational rearrangements that take place during final ribosome maturation in the cytoplasm.
doi_str_mv 10.15252/embj.201696012
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5376978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4321373413</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3862-d91d1021f8d1a747f0418dd0986b7b7ddd6f1ee76ab076bbee80acdf637e579e3</originalsourceid><addsrcrecordid>eNptkc1v1DAQxS0EotvCmRuyxIVDUzz2xh8ckErVlqLlQ6KcLSeebL1K4mAnRf3vybJlVRCn0Wh-8_RmHiEvgJ1AyUv-Brtqc8IZSCMZ8EdkAUvJCs5U-ZgsGJdQLEGbA3KY84YxVmoFT8kB16CMkGZB6s-dFzRk6mge01SPU3It7UIXahobilcX5ekxdb2nrh7DrRsx0_EGaT1cXn91Gekqr4H6KYV-TSX7RlOoYo4d0irENfaYQ35GnjSuzfj8vh6R7xfn12cfitWXy6uz01UxCC154Q14YBwa7cGppWrYbN17ZrSsVKW897IBRCVdxZSsKkTNXO0bKRSWyqA4Iu92usNUdehr7Mf5GDuk0Ll0Z6ML9u9JH27sOt7aUihplJ4FXt8LpPhjwjzaLuQa29b1GKdsQUspjRCwRV_9g27ilPr5vJnSgsklcDNTLx862lv58_8ZeLsDfoYW7_ZzYPZ3vHYbr93Ha88_vf-47-ZltlvOw_b9mB54-L-A-AVfsqhC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883064129</pqid></control><display><type>article</type><title>Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis</title><source>Springer Nature OA Free Journals</source><creator>Malyutin, Andrey G ; Musalgaonkar, Sharmishtha ; Patchett, Stephanie ; Frank, Joachim ; Johnson, Arlen W</creator><creatorcontrib>Malyutin, Andrey G ; Musalgaonkar, Sharmishtha ; Patchett, Stephanie ; Frank, Joachim ; Johnson, Arlen W</creatorcontrib><description>During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo‐electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin–ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1. Synopsis Cryo‐EM structures of the yeast 60S subunit bound to assembly factors Nmd3, Lsg1, and Tif6 reveal the conformational rearrangements that take place during final ribosome maturation in the cytoplasm. Structure of the 60S subunit export adapter Nmd3 and the GTPase Lsg1 at 3.1–4.5 Å resolution. Nmd3 spans the intersubunit interface of the 60S subunit from the L1 stalk through the E and P sites to Tif6. An eIF5A‐like domain of Nmd3 induces closure of the L1 stalk. Nmd3 must retract from the P site to allow binding of Sdo1 and final maturation steps to occur. Activation of Lsg1 GTPase requires both Nmd3 and 60S subunits. Lsg1 binding to helix 69 causes base flipping of G2661. Graphical Abstract Cryo‐EM structures of the yeast 60S subunit bound to assembly factors Nmd3, Lsg1, and Tif6 reveal the conformational rearrangements that take place during final ribosome maturation in the cytoplasm.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201696012</identifier><identifier>PMID: 28179369</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Cryoelectron Microscopy ; eIF5A ; EMBO32 ; EMBO36 ; EMBO40 ; GTP-Binding Proteins - chemistry ; GTP-Binding Proteins - metabolism ; LSG1 ; NMD3 ; Organelle Biogenesis ; Ribosomal Proteins - chemistry ; Ribosomal Proteins - metabolism ; ribosome biogenesis ; Ribosome Subunits, Large, Eukaryotic - metabolism ; Ribosome Subunits, Large, Eukaryotic - ultrastructure ; RNA-Binding Proteins - chemistry ; RNA-Binding Proteins - metabolism ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Yeasts</subject><ispartof>The EMBO journal, 2017-04, Vol.36 (7), p.854-868</ispartof><rights>The Authors 2017</rights><rights>2017 The Authors</rights><rights>2017 The Authors.</rights><rights>2017 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5449-6943 ; 0000-0002-4742-085X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376978/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376978/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1414,1430,27911,27912,41107,42176,45561,45562,46396,46820,51563,53778,53780</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201696012$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28179369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malyutin, Andrey G</creatorcontrib><creatorcontrib>Musalgaonkar, Sharmishtha</creatorcontrib><creatorcontrib>Patchett, Stephanie</creatorcontrib><creatorcontrib>Frank, Joachim</creatorcontrib><creatorcontrib>Johnson, Arlen W</creatorcontrib><title>Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo‐electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin–ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1. Synopsis Cryo‐EM structures of the yeast 60S subunit bound to assembly factors Nmd3, Lsg1, and Tif6 reveal the conformational rearrangements that take place during final ribosome maturation in the cytoplasm. Structure of the 60S subunit export adapter Nmd3 and the GTPase Lsg1 at 3.1–4.5 Å resolution. Nmd3 spans the intersubunit interface of the 60S subunit from the L1 stalk through the E and P sites to Tif6. An eIF5A‐like domain of Nmd3 induces closure of the L1 stalk. Nmd3 must retract from the P site to allow binding of Sdo1 and final maturation steps to occur. Activation of Lsg1 GTPase requires both Nmd3 and 60S subunits. Lsg1 binding to helix 69 causes base flipping of G2661. Graphical Abstract Cryo‐EM structures of the yeast 60S subunit bound to assembly factors Nmd3, Lsg1, and Tif6 reveal the conformational rearrangements that take place during final ribosome maturation in the cytoplasm.</description><subject>Cryoelectron Microscopy</subject><subject>eIF5A</subject><subject>EMBO32</subject><subject>EMBO36</subject><subject>EMBO40</subject><subject>GTP-Binding Proteins - chemistry</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>LSG1</subject><subject>NMD3</subject><subject>Organelle Biogenesis</subject><subject>Ribosomal Proteins - chemistry</subject><subject>Ribosomal Proteins - metabolism</subject><subject>ribosome biogenesis</subject><subject>Ribosome Subunits, Large, Eukaryotic - metabolism</subject><subject>Ribosome Subunits, Large, Eukaryotic - ultrastructure</subject><subject>RNA-Binding Proteins - chemistry</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc1v1DAQxS0EotvCmRuyxIVDUzz2xh8ckErVlqLlQ6KcLSeebL1K4mAnRf3vybJlVRCn0Wh-8_RmHiEvgJ1AyUv-Brtqc8IZSCMZ8EdkAUvJCs5U-ZgsGJdQLEGbA3KY84YxVmoFT8kB16CMkGZB6s-dFzRk6mge01SPU3It7UIXahobilcX5ekxdb2nrh7DrRsx0_EGaT1cXn91Gekqr4H6KYV-TSX7RlOoYo4d0irENfaYQ35GnjSuzfj8vh6R7xfn12cfitWXy6uz01UxCC154Q14YBwa7cGppWrYbN17ZrSsVKW897IBRCVdxZSsKkTNXO0bKRSWyqA4Iu92usNUdehr7Mf5GDuk0Ll0Z6ML9u9JH27sOt7aUihplJ4FXt8LpPhjwjzaLuQa29b1GKdsQUspjRCwRV_9g27ilPr5vJnSgsklcDNTLx862lv58_8ZeLsDfoYW7_ZzYPZ3vHYbr93Ha88_vf-47-ZltlvOw_b9mB54-L-A-AVfsqhC</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Malyutin, Andrey G</creator><creator>Musalgaonkar, Sharmishtha</creator><creator>Patchett, Stephanie</creator><creator>Frank, Joachim</creator><creator>Johnson, Arlen W</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5449-6943</orcidid><orcidid>https://orcid.org/0000-0002-4742-085X</orcidid></search><sort><creationdate>20170403</creationdate><title>Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis</title><author>Malyutin, Andrey G ; Musalgaonkar, Sharmishtha ; Patchett, Stephanie ; Frank, Joachim ; Johnson, Arlen W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3862-d91d1021f8d1a747f0418dd0986b7b7ddd6f1ee76ab076bbee80acdf637e579e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cryoelectron Microscopy</topic><topic>eIF5A</topic><topic>EMBO32</topic><topic>EMBO36</topic><topic>EMBO40</topic><topic>GTP-Binding Proteins - chemistry</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>LSG1</topic><topic>NMD3</topic><topic>Organelle Biogenesis</topic><topic>Ribosomal Proteins - chemistry</topic><topic>Ribosomal Proteins - metabolism</topic><topic>ribosome biogenesis</topic><topic>Ribosome Subunits, Large, Eukaryotic - metabolism</topic><topic>Ribosome Subunits, Large, Eukaryotic - ultrastructure</topic><topic>RNA-Binding Proteins - chemistry</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malyutin, Andrey G</creatorcontrib><creatorcontrib>Musalgaonkar, Sharmishtha</creatorcontrib><creatorcontrib>Patchett, Stephanie</creatorcontrib><creatorcontrib>Frank, Joachim</creatorcontrib><creatorcontrib>Johnson, Arlen W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Malyutin, Andrey G</au><au>Musalgaonkar, Sharmishtha</au><au>Patchett, Stephanie</au><au>Frank, Joachim</au><au>Johnson, Arlen W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2017-04-03</date><risdate>2017</risdate><volume>36</volume><issue>7</issue><spage>854</spage><epage>868</epage><pages>854-868</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo‐electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin–ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1. Synopsis Cryo‐EM structures of the yeast 60S subunit bound to assembly factors Nmd3, Lsg1, and Tif6 reveal the conformational rearrangements that take place during final ribosome maturation in the cytoplasm. Structure of the 60S subunit export adapter Nmd3 and the GTPase Lsg1 at 3.1–4.5 Å resolution. Nmd3 spans the intersubunit interface of the 60S subunit from the L1 stalk through the E and P sites to Tif6. An eIF5A‐like domain of Nmd3 induces closure of the L1 stalk. Nmd3 must retract from the P site to allow binding of Sdo1 and final maturation steps to occur. Activation of Lsg1 GTPase requires both Nmd3 and 60S subunits. Lsg1 binding to helix 69 causes base flipping of G2661. Graphical Abstract Cryo‐EM structures of the yeast 60S subunit bound to assembly factors Nmd3, Lsg1, and Tif6 reveal the conformational rearrangements that take place during final ribosome maturation in the cytoplasm.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28179369</pmid><doi>10.15252/embj.201696012</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5449-6943</orcidid><orcidid>https://orcid.org/0000-0002-4742-085X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2017-04, Vol.36 (7), p.854-868
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5376978
source Springer Nature OA Free Journals
subjects Cryoelectron Microscopy
eIF5A
EMBO32
EMBO36
EMBO40
GTP-Binding Proteins - chemistry
GTP-Binding Proteins - metabolism
LSG1
NMD3
Organelle Biogenesis
Ribosomal Proteins - chemistry
Ribosomal Proteins - metabolism
ribosome biogenesis
Ribosome Subunits, Large, Eukaryotic - metabolism
Ribosome Subunits, Large, Eukaryotic - ultrastructure
RNA-Binding Proteins - chemistry
RNA-Binding Proteins - metabolism
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Yeasts
title Nmd3 is a structural mimic of eIF5A, and activates the cpGTPase Lsg1 during 60S ribosome biogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T04%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nmd3%20is%20a%20structural%20mimic%20of%20eIF5A,%20and%20activates%20the%20cpGTPase%20Lsg1%20during%2060S%20ribosome%20biogenesis&rft.jtitle=The%20EMBO%20journal&rft.au=Malyutin,%20Andrey%20G&rft.date=2017-04-03&rft.volume=36&rft.issue=7&rft.spage=854&rft.epage=868&rft.pages=854-868&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201696012&rft_dat=%3Cproquest_C6C%3E4321373413%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883064129&rft_id=info:pmid/28179369&rfr_iscdi=true