Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae

Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2017-03, Vol.114 (12), p.E2411-E2419
Hauptverfasser: Ostrow, A. Zachary, Kalhor, Reza, Gan, Yan, Villwock, Sandra K., Linke, Christian, Barberis, Matteo, Chen, Lin, Aparicio, Oscar M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E2419
container_issue 12
container_start_page E2411
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Ostrow, A. Zachary
Kalhor, Reza
Gan, Yan
Villwock, Sandra K.
Linke, Christian
Barberis, Matteo
Chen, Lin
Aparicio, Oscar M.
description Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Saccharomyces cerevisiae Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G₁ phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in amanner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance.
doi_str_mv 10.1073/pnas.1612422114
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5373409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480212</jstor_id><sourcerecordid>26480212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-31b30ecd3d6db47a927320741f5ed7897df93d92a08bee3717fdce0c6aa3a8053</originalsourceid><addsrcrecordid>eNqNkjuPEzEUhS0EYsNCTQWyREMzWb9mbDdIq_CUVlAAteXYdxKHGXuwJ5Gg4LfjKPsAKipLPt858r0-CD2lZEmJ5BdTtGVJO8oEY5SKe2hBiaZNJzS5jxaEMNkowcQZelTKjhCiW0UeojOmWNdWcIF-rVIskA_gcZ_yty1Yj30YIYefdg4p4jHNoccuxTmnoeDXHy9xhmkI7iTPYQxxg230uEz1yg445Y2NN_ZUvducxlTSCAWHiD8vsYMMh1CChcfoQW-HAk-uz3P09e2bL6v3zdWndx9Wl1eNE7KbG07XnIDz3Hd-LaTVTHJGpKB9C14qLX2vudfMErUG4JLK3jsgrrOWW0Vafo5enXKn_XqEqtVx7GCmHEabf5hkg_lbiWFrNulgWi65ILoGvLwOyOn7HspsxlAcDIONkPbFUKWpkscN_wcqWyoEbbuKvvgH3aV9jnUTlVJUS9FpWqmLE-VyKiVDf_tuSsyxBuZYA3NXg-p4_ue4t_zNv1fg2QnYlTnlO70TijDK-G9P5rrF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881974691</pqid></control><display><type>article</type><title>Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ostrow, A. Zachary ; Kalhor, Reza ; Gan, Yan ; Villwock, Sandra K. ; Linke, Christian ; Barberis, Matteo ; Chen, Lin ; Aparicio, Oscar M.</creator><creatorcontrib>Ostrow, A. Zachary ; Kalhor, Reza ; Gan, Yan ; Villwock, Sandra K. ; Linke, Christian ; Barberis, Matteo ; Chen, Lin ; Aparicio, Oscar M.</creatorcontrib><description>Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Saccharomyces cerevisiae Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G₁ phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in amanner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1612422114</identifier><identifier>PMID: 28265091</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Binding sites ; Biological Sciences ; Cell cycle ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chromosomes ; Chromosomes, Fungal - genetics ; Chromosomes, Fungal - metabolism ; Deoxyribonucleic acid ; Deregulation ; Dimerization ; DNA ; DNA Replication Timing ; Forkhead Transcription Factors - chemistry ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - metabolism ; G1 Phase ; Gene Expression Regulation, Fungal ; Humans ; Molecular Sequence Data ; Mutation ; PNAS Plus ; Proteins ; Replication Origin ; S Phase ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Alignment ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.E2411-E2419</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-31b30ecd3d6db47a927320741f5ed7897df93d92a08bee3717fdce0c6aa3a8053</citedby><cites>FETCH-LOGICAL-c476t-31b30ecd3d6db47a927320741f5ed7897df93d92a08bee3717fdce0c6aa3a8053</cites><orcidid>0000-0002-5558-7545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480212$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480212$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28265091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostrow, A. Zachary</creatorcontrib><creatorcontrib>Kalhor, Reza</creatorcontrib><creatorcontrib>Gan, Yan</creatorcontrib><creatorcontrib>Villwock, Sandra K.</creatorcontrib><creatorcontrib>Linke, Christian</creatorcontrib><creatorcontrib>Barberis, Matteo</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Aparicio, Oscar M.</creatorcontrib><title>Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Saccharomyces cerevisiae Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G₁ phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in amanner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Chromosomes, Fungal - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Deregulation</subject><subject>Dimerization</subject><subject>DNA</subject><subject>DNA Replication Timing</subject><subject>Forkhead Transcription Factors - chemistry</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>G1 Phase</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Humans</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Replication Origin</subject><subject>S Phase</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkjuPEzEUhS0EYsNCTQWyREMzWb9mbDdIq_CUVlAAteXYdxKHGXuwJ5Gg4LfjKPsAKipLPt858r0-CD2lZEmJ5BdTtGVJO8oEY5SKe2hBiaZNJzS5jxaEMNkowcQZelTKjhCiW0UeojOmWNdWcIF-rVIskA_gcZ_yty1Yj30YIYefdg4p4jHNoccuxTmnoeDXHy9xhmkI7iTPYQxxg230uEz1yg445Y2NN_ZUvducxlTSCAWHiD8vsYMMh1CChcfoQW-HAk-uz3P09e2bL6v3zdWndx9Wl1eNE7KbG07XnIDz3Hd-LaTVTHJGpKB9C14qLX2vudfMErUG4JLK3jsgrrOWW0Vafo5enXKn_XqEqtVx7GCmHEabf5hkg_lbiWFrNulgWi65ILoGvLwOyOn7HspsxlAcDIONkPbFUKWpkscN_wcqWyoEbbuKvvgH3aV9jnUTlVJUS9FpWqmLE-VyKiVDf_tuSsyxBuZYA3NXg-p4_ue4t_zNv1fg2QnYlTnlO70TijDK-G9P5rrF</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>Ostrow, A. Zachary</creator><creator>Kalhor, Reza</creator><creator>Gan, Yan</creator><creator>Villwock, Sandra K.</creator><creator>Linke, Christian</creator><creator>Barberis, Matteo</creator><creator>Chen, Lin</creator><creator>Aparicio, Oscar M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5558-7545</orcidid></search><sort><creationdate>20170321</creationdate><title>Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae</title><author>Ostrow, A. Zachary ; Kalhor, Reza ; Gan, Yan ; Villwock, Sandra K. ; Linke, Christian ; Barberis, Matteo ; Chen, Lin ; Aparicio, Oscar M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-31b30ecd3d6db47a927320741f5ed7897df93d92a08bee3717fdce0c6aa3a8053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Chromosomes, Fungal - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Deregulation</topic><topic>Dimerization</topic><topic>DNA</topic><topic>DNA Replication Timing</topic><topic>Forkhead Transcription Factors - chemistry</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>G1 Phase</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Humans</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Replication Origin</topic><topic>S Phase</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostrow, A. Zachary</creatorcontrib><creatorcontrib>Kalhor, Reza</creatorcontrib><creatorcontrib>Gan, Yan</creatorcontrib><creatorcontrib>Villwock, Sandra K.</creatorcontrib><creatorcontrib>Linke, Christian</creatorcontrib><creatorcontrib>Barberis, Matteo</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Aparicio, Oscar M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostrow, A. Zachary</au><au>Kalhor, Reza</au><au>Gan, Yan</au><au>Villwock, Sandra K.</au><au>Linke, Christian</au><au>Barberis, Matteo</au><au>Chen, Lin</au><au>Aparicio, Oscar M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-03-21</date><risdate>2017</risdate><volume>114</volume><issue>12</issue><spage>E2411</spage><epage>E2419</epage><pages>E2411-E2419</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Saccharomyces cerevisiae Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G₁ phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in amanner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28265091</pmid><doi>10.1073/pnas.1612422114</doi><orcidid>https://orcid.org/0000-0002-5558-7545</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.E2411-E2419
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5373409
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Motifs
Amino Acid Sequence
Binding sites
Biological Sciences
Cell cycle
Cell Cycle Proteins - chemistry
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Chromosomes
Chromosomes, Fungal - genetics
Chromosomes, Fungal - metabolism
Deoxyribonucleic acid
Deregulation
Dimerization
DNA
DNA Replication Timing
Forkhead Transcription Factors - chemistry
Forkhead Transcription Factors - genetics
Forkhead Transcription Factors - metabolism
G1 Phase
Gene Expression Regulation, Fungal
Humans
Molecular Sequence Data
Mutation
PNAS Plus
Proteins
Replication Origin
S Phase
Saccharomyces cerevisiae
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Alignment
Yeast
Yeasts
title Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20forkhead%20dimerization%20motif%20controls%20DNA%20replication%20timing%20and%20spatial%20organization%20of%20chromosomes%20in%20S.%20cerevisiae&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ostrow,%20A.%20Zachary&rft.date=2017-03-21&rft.volume=114&rft.issue=12&rft.spage=E2411&rft.epage=E2419&rft.pages=E2411-E2419&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1612422114&rft_dat=%3Cjstor_pubme%3E26480212%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881974691&rft_id=info:pmid/28265091&rft_jstor_id=26480212&rfr_iscdi=true