Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae
Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2017-03, Vol.114 (12), p.E2411-E2419 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E2419 |
---|---|
container_issue | 12 |
container_start_page | E2411 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Ostrow, A. Zachary Kalhor, Reza Gan, Yan Villwock, Sandra K. Linke, Christian Barberis, Matteo Chen, Lin Aparicio, Oscar M. |
description | Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Saccharomyces cerevisiae Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G₁ phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in amanner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance. |
doi_str_mv | 10.1073/pnas.1612422114 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5373409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480212</jstor_id><sourcerecordid>26480212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-31b30ecd3d6db47a927320741f5ed7897df93d92a08bee3717fdce0c6aa3a8053</originalsourceid><addsrcrecordid>eNqNkjuPEzEUhS0EYsNCTQWyREMzWb9mbDdIq_CUVlAAteXYdxKHGXuwJ5Gg4LfjKPsAKipLPt858r0-CD2lZEmJ5BdTtGVJO8oEY5SKe2hBiaZNJzS5jxaEMNkowcQZelTKjhCiW0UeojOmWNdWcIF-rVIskA_gcZ_yty1Yj30YIYefdg4p4jHNoccuxTmnoeDXHy9xhmkI7iTPYQxxg230uEz1yg445Y2NN_ZUvducxlTSCAWHiD8vsYMMh1CChcfoQW-HAk-uz3P09e2bL6v3zdWndx9Wl1eNE7KbG07XnIDz3Hd-LaTVTHJGpKB9C14qLX2vudfMErUG4JLK3jsgrrOWW0Vafo5enXKn_XqEqtVx7GCmHEabf5hkg_lbiWFrNulgWi65ILoGvLwOyOn7HspsxlAcDIONkPbFUKWpkscN_wcqWyoEbbuKvvgH3aV9jnUTlVJUS9FpWqmLE-VyKiVDf_tuSsyxBuZYA3NXg-p4_ue4t_zNv1fg2QnYlTnlO70TijDK-G9P5rrF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881974691</pqid></control><display><type>article</type><title>Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ostrow, A. Zachary ; Kalhor, Reza ; Gan, Yan ; Villwock, Sandra K. ; Linke, Christian ; Barberis, Matteo ; Chen, Lin ; Aparicio, Oscar M.</creator><creatorcontrib>Ostrow, A. Zachary ; Kalhor, Reza ; Gan, Yan ; Villwock, Sandra K. ; Linke, Christian ; Barberis, Matteo ; Chen, Lin ; Aparicio, Oscar M.</creatorcontrib><description>Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Saccharomyces cerevisiae Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G₁ phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in amanner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1612422114</identifier><identifier>PMID: 28265091</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Binding sites ; Biological Sciences ; Cell cycle ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Chromosomes ; Chromosomes, Fungal - genetics ; Chromosomes, Fungal - metabolism ; Deoxyribonucleic acid ; Deregulation ; Dimerization ; DNA ; DNA Replication Timing ; Forkhead Transcription Factors - chemistry ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - metabolism ; G1 Phase ; Gene Expression Regulation, Fungal ; Humans ; Molecular Sequence Data ; Mutation ; PNAS Plus ; Proteins ; Replication Origin ; S Phase ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Alignment ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.E2411-E2419</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-31b30ecd3d6db47a927320741f5ed7897df93d92a08bee3717fdce0c6aa3a8053</citedby><cites>FETCH-LOGICAL-c476t-31b30ecd3d6db47a927320741f5ed7897df93d92a08bee3717fdce0c6aa3a8053</cites><orcidid>0000-0002-5558-7545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480212$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480212$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28265091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostrow, A. Zachary</creatorcontrib><creatorcontrib>Kalhor, Reza</creatorcontrib><creatorcontrib>Gan, Yan</creatorcontrib><creatorcontrib>Villwock, Sandra K.</creatorcontrib><creatorcontrib>Linke, Christian</creatorcontrib><creatorcontrib>Barberis, Matteo</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Aparicio, Oscar M.</creatorcontrib><title>Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Saccharomyces cerevisiae Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G₁ phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in amanner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Chromosomes, Fungal - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>Deregulation</subject><subject>Dimerization</subject><subject>DNA</subject><subject>DNA Replication Timing</subject><subject>Forkhead Transcription Factors - chemistry</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>G1 Phase</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Humans</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Replication Origin</subject><subject>S Phase</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkjuPEzEUhS0EYsNCTQWyREMzWb9mbDdIq_CUVlAAteXYdxKHGXuwJ5Gg4LfjKPsAKipLPt858r0-CD2lZEmJ5BdTtGVJO8oEY5SKe2hBiaZNJzS5jxaEMNkowcQZelTKjhCiW0UeojOmWNdWcIF-rVIskA_gcZ_yty1Yj30YIYefdg4p4jHNoccuxTmnoeDXHy9xhmkI7iTPYQxxg230uEz1yg445Y2NN_ZUvducxlTSCAWHiD8vsYMMh1CChcfoQW-HAk-uz3P09e2bL6v3zdWndx9Wl1eNE7KbG07XnIDz3Hd-LaTVTHJGpKB9C14qLX2vudfMErUG4JLK3jsgrrOWW0Vafo5enXKn_XqEqtVx7GCmHEabf5hkg_lbiWFrNulgWi65ILoGvLwOyOn7HspsxlAcDIONkPbFUKWpkscN_wcqWyoEbbuKvvgH3aV9jnUTlVJUS9FpWqmLE-VyKiVDf_tuSsyxBuZYA3NXg-p4_ue4t_zNv1fg2QnYlTnlO70TijDK-G9P5rrF</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>Ostrow, A. Zachary</creator><creator>Kalhor, Reza</creator><creator>Gan, Yan</creator><creator>Villwock, Sandra K.</creator><creator>Linke, Christian</creator><creator>Barberis, Matteo</creator><creator>Chen, Lin</creator><creator>Aparicio, Oscar M.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5558-7545</orcidid></search><sort><creationdate>20170321</creationdate><title>Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae</title><author>Ostrow, A. Zachary ; Kalhor, Reza ; Gan, Yan ; Villwock, Sandra K. ; Linke, Christian ; Barberis, Matteo ; Chen, Lin ; Aparicio, Oscar M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-31b30ecd3d6db47a927320741f5ed7897df93d92a08bee3717fdce0c6aa3a8053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Chromosomes, Fungal - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>Deregulation</topic><topic>Dimerization</topic><topic>DNA</topic><topic>DNA Replication Timing</topic><topic>Forkhead Transcription Factors - chemistry</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>G1 Phase</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Humans</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Replication Origin</topic><topic>S Phase</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostrow, A. Zachary</creatorcontrib><creatorcontrib>Kalhor, Reza</creatorcontrib><creatorcontrib>Gan, Yan</creatorcontrib><creatorcontrib>Villwock, Sandra K.</creatorcontrib><creatorcontrib>Linke, Christian</creatorcontrib><creatorcontrib>Barberis, Matteo</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Aparicio, Oscar M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostrow, A. Zachary</au><au>Kalhor, Reza</au><au>Gan, Yan</au><au>Villwock, Sandra K.</au><au>Linke, Christian</au><au>Barberis, Matteo</au><au>Chen, Lin</au><au>Aparicio, Oscar M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-03-21</date><risdate>2017</risdate><volume>114</volume><issue>12</issue><spage>E2411</spage><epage>E2419</epage><pages>E2411-E2419</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Forkhead Box (Fox) proteins share the Forkhead domain, a winged-helix DNA binding module, which is conserved among eukaryotes from yeast to humans. These sequence-specific DNA binding proteins have been primarily characterized as transcription factors regulating diverse cellular processes from cell cycle control to developmental fate, deregulation of which contributes to developmental defects, cancer, and aging. We recently identified Saccharomyces cerevisiae Forkhead 1 (Fkh1) and Forkhead 2 (Fkh2) as required for the clustering of a subset of replication origins in G₁ phase and for the early initiation of these origins in the ensuing S phase, suggesting a mechanistic role linking the spatial organization of the origins and their activity. Here, we show that Fkh1 and Fkh2 share a unique structural feature of human FoxP proteins that enables FoxP2 and FoxP3 to form domain-swapped dimers capable of bridging two DNA molecules in vitro. Accordingly, Fkh1 self-associates in vitro and in vivo in amanner dependent on the conserved domain-swapping region, strongly suggestive of homodimer formation. Fkh1- and Fkh2-domain-swap-minus (dsm) mutations are functional as transcription factors yet are defective in replication origin timing control. Fkh1-dsm binds replication origins in vivo but fails to cluster them, supporting the conclusion that Fkh1 and Fkh2 dimers perform a structural role in the spatial organization of chromosomal elements with functional importance.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28265091</pmid><doi>10.1073/pnas.1612422114</doi><orcidid>https://orcid.org/0000-0002-5558-7545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.E2411-E2419 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5373409 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Motifs Amino Acid Sequence Binding sites Biological Sciences Cell cycle Cell Cycle Proteins - chemistry Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Chromosomes Chromosomes, Fungal - genetics Chromosomes, Fungal - metabolism Deoxyribonucleic acid Deregulation Dimerization DNA DNA Replication Timing Forkhead Transcription Factors - chemistry Forkhead Transcription Factors - genetics Forkhead Transcription Factors - metabolism G1 Phase Gene Expression Regulation, Fungal Humans Molecular Sequence Data Mutation PNAS Plus Proteins Replication Origin S Phase Saccharomyces cerevisiae Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Sequence Alignment Yeast Yeasts |
title | Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in S. cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conserved%20forkhead%20dimerization%20motif%20controls%20DNA%20replication%20timing%20and%20spatial%20organization%20of%20chromosomes%20in%20S.%20cerevisiae&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ostrow,%20A.%20Zachary&rft.date=2017-03-21&rft.volume=114&rft.issue=12&rft.spage=E2411&rft.epage=E2419&rft.pages=E2411-E2419&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1612422114&rft_dat=%3Cjstor_pubme%3E26480212%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881974691&rft_id=info:pmid/28265091&rft_jstor_id=26480212&rfr_iscdi=true |